ISRNet: An Effective Network for SAR Interference Suppression and Recognition

Xiuhe Li, Jinhe Ran, H. Zhang
{"title":"ISRNet: An Effective Network for SAR Interference Suppression and Recognition","authors":"Xiuhe Li, Jinhe Ran, H. Zhang","doi":"10.1109/MAPE53743.2022.9935209","DOIUrl":null,"url":null,"abstract":"Synthetic aperture radar (SAR) is an all-weather, high-resolution sensor, but the presence of many kinds of interference in space can affect its mapping and survey capabilities. To address this problem, we propose an innovative network (ISRNet) for SAR interference suppression and recognition. Firstly, the SAR image model is proposed, including the target image, interference image, and background noise image. Secondly, ISRNet is composed of two parts, the interference suppression (IS) part and interference recognition (IR part), where IS part is based on Encoder-Decoder Block (EDB) and Feature Extraction Module (FEM) as the main framework to suppress interference. After that, we propose a novel interference recognition strategy: IR part to directly recognize the interference image to increase the recognition accuracy. Four types of interference data are adopted to verify the capability of ISRNet, and the results show that ISRNet has good suppression performance and high accuracy of interference recognition.","PeriodicalId":442568,"journal":{"name":"2022 IEEE 9th International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 9th International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MAPE53743.2022.9935209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic aperture radar (SAR) is an all-weather, high-resolution sensor, but the presence of many kinds of interference in space can affect its mapping and survey capabilities. To address this problem, we propose an innovative network (ISRNet) for SAR interference suppression and recognition. Firstly, the SAR image model is proposed, including the target image, interference image, and background noise image. Secondly, ISRNet is composed of two parts, the interference suppression (IS) part and interference recognition (IR part), where IS part is based on Encoder-Decoder Block (EDB) and Feature Extraction Module (FEM) as the main framework to suppress interference. After that, we propose a novel interference recognition strategy: IR part to directly recognize the interference image to increase the recognition accuracy. Four types of interference data are adopted to verify the capability of ISRNet, and the results show that ISRNet has good suppression performance and high accuracy of interference recognition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ISRNet: SAR干扰抑制与识别的有效网络
合成孔径雷达(SAR)是一种全天候、高分辨率的传感器,但空间中多种干扰的存在会影响其测绘能力。为了解决这一问题,我们提出了一种创新的SAR干扰抑制和识别网络(ISRNet)。首先,提出了SAR图像模型,包括目标图像、干涉图像和背景噪声图像;其次,ISRNet由干扰抑制(is)部分和干扰识别(IR)部分组成,其中干扰抑制部分以编码器-解码器块(EDB)和特征提取模块(FEM)为主要框架进行干扰抑制。在此基础上,提出了一种新的干扰识别策略:红外部分直接识别干扰图像,提高识别精度。采用四种干扰数据对ISRNet进行了性能验证,结果表明ISRNet具有良好的抑制性能和较高的干扰识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EMI Reduction in Multilayer PCBs Using Planar Interdigital Slot Structures on the Reference Planes Spoof Surface Plasmon Polaritons-Fed Dual Polarized Patch Antenna Array A Design of Wideband Bandpass Three-Dimensional Frequency Selective Surface Research and Design of Broadband High Power Limiter A 24-44 GHz Highly Linear and Efficient mm-Wave Power Amplifier in 65-nm CMOS for 5G Phased Array Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1