Zephyr: First-person wireless analytics from high-density in-stadium deployments

Nathan D. Mickulicz, Utsav Drolia, P. Narasimhan, R. Gandhi
{"title":"Zephyr: First-person wireless analytics from high-density in-stadium deployments","authors":"Nathan D. Mickulicz, Utsav Drolia, P. Narasimhan, R. Gandhi","doi":"10.1109/WoWMoM.2016.7523552","DOIUrl":null,"url":null,"abstract":"Zephyr is a first-person wireless-performance data-collection approach to study the end-user's perspective of the wireless-network's performance using an OTT video-streaming service used in 35 mobile applications and 25 sports stadiums. We use Zephyr to provide insights into user behavior and user disengagement from production traces gathered over 2+ years. We identify the different types of failures that we've observed, and describe how frequently they occur. Finally, we correlate low-level Wi-Fi performance data with application-level failures and describe the trends that we observe. The data from Zephyr reveals that 50% of users disengage if video playback does not begin within 12 seconds, and also if video playback stalls, instream, for more than 6 seconds. The most dominant failure type for video playback is cancellation during the initial buffering phase, which accounts for 30% of all streams.","PeriodicalId":187747,"journal":{"name":"2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WoWMoM.2016.7523552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Zephyr is a first-person wireless-performance data-collection approach to study the end-user's perspective of the wireless-network's performance using an OTT video-streaming service used in 35 mobile applications and 25 sports stadiums. We use Zephyr to provide insights into user behavior and user disengagement from production traces gathered over 2+ years. We identify the different types of failures that we've observed, and describe how frequently they occur. Finally, we correlate low-level Wi-Fi performance data with application-level failures and describe the trends that we observe. The data from Zephyr reveals that 50% of users disengage if video playback does not begin within 12 seconds, and also if video playback stalls, instream, for more than 6 seconds. The most dominant failure type for video playback is cancellation during the initial buffering phase, which accounts for 30% of all streams.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Zephyr:从高密度体育场内部署的第一人称无线分析
Zephyr是一种第一人称无线性能数据收集方法,通过OTT视频流服务研究终端用户对无线网络性能的看法,该服务已在35个移动应用程序和25个体育场馆中使用。我们使用Zephyr从收集了2年多的生产轨迹中提供对用户行为和用户脱离的洞察。我们识别我们观察到的不同类型的故障,并描述它们发生的频率。最后,我们将低级Wi-Fi性能数据与应用程序级故障联系起来,并描述了我们观察到的趋势。Zephyr的数据显示,如果视频播放在12秒内没有开始,50%的用户会退出,如果视频播放停顿超过6秒。视频播放最主要的故障类型是在初始缓冲阶段取消,占所有流的30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental validations of bandwidth compressed multicarrier signals Asynchronous reputation systems in device-to-device ecosystems Measurement-based study on the influence of localization errors on estimated shadow correlations An autonomous diagnostic tool for the WirelessHART industrial standard Evaluation of the IEEE 802.11ah Restricted Access Window mechanism for dense IoT networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1