Robustness threshold methodology for multicriteria based ranking using imprecise data

Bastien Rizzon, S. Galichet, V. Clivillé
{"title":"Robustness threshold methodology for multicriteria based ranking using imprecise data","authors":"Bastien Rizzon, S. Galichet, V. Clivillé","doi":"10.1109/MCDM.2014.7007181","DOIUrl":null,"url":null,"abstract":"It is well established that making decisions from defined data according to various criteria requires the use of MultiCriteria Decision Aiding or Analysis (MCDA) methods. However the necessary input data for these approaches are often ill-known especially when the data are a priori estimated. The common MCDA approaches consider these data as singular/scalar values. This paper deals with the consideration of more realistic, values by studying the impact of imprecision on a classical “precise” ranking established with ACUTA, a method based on additive utilities. We propose a generic approach to establish the concordance of pairwise relations of preference despite interval-based imprecision by complementing ACUTA with a computation of Kendall's index of concordance and of a threshold for maintaining this concordance. The methodology is applied to an industrial case subjected to Sustainable Development problems.","PeriodicalId":335170,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCDM.2014.7007181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

It is well established that making decisions from defined data according to various criteria requires the use of MultiCriteria Decision Aiding or Analysis (MCDA) methods. However the necessary input data for these approaches are often ill-known especially when the data are a priori estimated. The common MCDA approaches consider these data as singular/scalar values. This paper deals with the consideration of more realistic, values by studying the impact of imprecision on a classical “precise” ranking established with ACUTA, a method based on additive utilities. We propose a generic approach to establish the concordance of pairwise relations of preference despite interval-based imprecision by complementing ACUTA with a computation of Kendall's index of concordance and of a threshold for maintaining this concordance. The methodology is applied to an industrial case subjected to Sustainable Development problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于不精确数据的多标准排序稳健性阈值方法
众所周知,根据各种标准从定义的数据做出决策需要使用多标准决策辅助或分析(MCDA)方法。然而,这些方法的必要输入数据往往不为人所知,特别是当数据是先验估计时。常见的MCDA方法将这些数据视为奇异/标量值。本文通过研究不精度对ACUTA(一种基于附加效用的方法)建立的经典“精确”排名的影响,来考虑更现实的价值。我们提出了一种通用的方法来建立两两偏好关系的一致性,尽管基于区间的不精确,通过补充ACUTA与肯德尔的一致性指数和维持这种一致性的阈值的计算。该方法适用于一个工业案例受到可持续发展的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An extended bilevel programming model and its kth-best algorithm for dynamic decision making in emergency situations A bottom-up implementation of Path-Relinking for Phylogenetic reconstruction applied to Maximum Parsimony Visualization and classification of protein secondary structures using Self-Organizing Maps Gene interaction networks boost genetic algorithm performance in biomarker discovery Partially Optimized Cyclic Shift Crossover for Multi-Objective Genetic Algorithms for the multi-objective Vehicle Routing Problem with time-windows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1