Optimised Compression Strategy in Wavelet-Based Video Coding using Improved Context Models

Toni Zgaljic, M. Mrak, E. Izquierdo
{"title":"Optimised Compression Strategy in Wavelet-Based Video Coding using Improved Context Models","authors":"Toni Zgaljic, M. Mrak, E. Izquierdo","doi":"10.1109/ICIP.2007.4379331","DOIUrl":null,"url":null,"abstract":"Accurate probability estimation is a key to efficient compression in entropy coding phase of state-of-the-art video coding systems. Probability estimation can be enhanced if contexts in which symbols occur are used during the probability estimation phase. However, these contexts have to be carefully designed in order to avoid negative effects. Methods that use tree structures to model contexts of various syntax elements have been proven efficient in image and video coding. In this paper we use such structure to build optimised contexts for application in scalable wavelet-based video coding. With the proposed approach context are designed separately for intra-coded frames and motion-compensated frames considering varying statistics across different spatio-temporal subbands. Moreover, contexts are separately designed for different bit-planes. Comparison with compression using fixed contexts from embedded ZeroBlock coding (EZBC) has been performed showing improvements when context modelling on tree structures is applied.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Accurate probability estimation is a key to efficient compression in entropy coding phase of state-of-the-art video coding systems. Probability estimation can be enhanced if contexts in which symbols occur are used during the probability estimation phase. However, these contexts have to be carefully designed in order to avoid negative effects. Methods that use tree structures to model contexts of various syntax elements have been proven efficient in image and video coding. In this paper we use such structure to build optimised contexts for application in scalable wavelet-based video coding. With the proposed approach context are designed separately for intra-coded frames and motion-compensated frames considering varying statistics across different spatio-temporal subbands. Moreover, contexts are separately designed for different bit-planes. Comparison with compression using fixed contexts from embedded ZeroBlock coding (EZBC) has been performed showing improvements when context modelling on tree structures is applied.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进上下文模型的小波视频编码优化压缩策略
在目前最先进的视频编码系统中,准确的概率估计是保证熵编码阶段有效压缩的关键。如果在概率估计阶段使用出现符号的上下文,则可以增强概率估计。但是,必须仔细设计这些环境,以避免负面影响。在图像和视频编码中,使用树形结构对各种语法元素的上下文建模的方法已被证明是有效的。在本文中,我们使用这种结构来构建优化的上下文,用于可扩展的基于小波的视频编码。考虑到不同时空子带的不同统计信息,该方法分别为编码内帧和运动补偿帧设计上下文。此外,上下文是针对不同的位平面单独设计的。与使用来自嵌入式零块编码(EZBC)的固定上下文的压缩进行了比较,显示了在树形结构上应用上下文建模时的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Block-Based Gradient Domain High Dynamic Range Compression Design for Real-Time Applications Generation of Layered Depth Images from Multi-View Video Detection Strategies for Image Cube Trajectory Analysis An Efficient Compression Algorithm for Hyperspectral Images Based on Correlation Coefficients Adaptive Three Dimensional Wavelet Zerotree Coding Enabling Introduction of Stereoscopic (3D) Video: Formats and Compression Standards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1