Compressive sensing based direction-of-arrival estimation using reweighted greedy block coordinate descent algorithm for ESPAR antennas

H. Yazdani, A. Vosoughi, N. Rahnavard
{"title":"Compressive sensing based direction-of-arrival estimation using reweighted greedy block coordinate descent algorithm for ESPAR antennas","authors":"H. Yazdani, A. Vosoughi, N. Rahnavard","doi":"10.1109/MILCOM.2017.8170862","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of direction-of-arrival (DoA) estimation using electronically steerable parasitic array radiator (ESPAR) antenna based on compressive sensing. For an ESPAR antenna, the beampatterns and sparse model of DoA estimation problem in terms of overcomplete dictionary and sampling grid is presented. The DoA estimation problem is formulated as a mixed-norm ℓ<inf>2,1</inf> minimization problem and the reactance domain multiple signal classification (RD-MUSIC) spatial spectrum for ESPAR antenna is introduced. Then, we propose reweighted greedy block coordinate descent (RW-GBCD) and reweighted ℓ<inf>2,1</inf>-SVD (RW-ℓ<inf>2,1</inf>-SVD) algorithms for DOA estimation using ESPAR. The performance of RW-GBCD for DoA estimation is compared to that of GBCD, ℓ<inf>2,1</inf>-SVD and RD-MUSIC algorithms. RW-GBCD benefits from less computational complexity compared to RW-ℓ<inf>2,1</inf>-SVD. Simulation results demonstrate that the performance of RW-GBCD is better than that of GBCD and ℓ<inf>2,1</inf>-SVD. When angle separation is less than 10°, RW-ℓ<inf>2,1</inf>-SVD outperforms RW-GBCD. However, when angle separation is more than 10°, the performance of RW-GBCD in terms of root mean square error (RMSE) is approximately the same as that of RW-ℓ<inf>2,1</inf>-SVD.","PeriodicalId":113767,"journal":{"name":"MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.2017.8170862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we consider the problem of direction-of-arrival (DoA) estimation using electronically steerable parasitic array radiator (ESPAR) antenna based on compressive sensing. For an ESPAR antenna, the beampatterns and sparse model of DoA estimation problem in terms of overcomplete dictionary and sampling grid is presented. The DoA estimation problem is formulated as a mixed-norm ℓ2,1 minimization problem and the reactance domain multiple signal classification (RD-MUSIC) spatial spectrum for ESPAR antenna is introduced. Then, we propose reweighted greedy block coordinate descent (RW-GBCD) and reweighted ℓ2,1-SVD (RW-ℓ2,1-SVD) algorithms for DOA estimation using ESPAR. The performance of RW-GBCD for DoA estimation is compared to that of GBCD, ℓ2,1-SVD and RD-MUSIC algorithms. RW-GBCD benefits from less computational complexity compared to RW-ℓ2,1-SVD. Simulation results demonstrate that the performance of RW-GBCD is better than that of GBCD and ℓ2,1-SVD. When angle separation is less than 10°, RW-ℓ2,1-SVD outperforms RW-GBCD. However, when angle separation is more than 10°, the performance of RW-GBCD in terms of root mean square error (RMSE) is approximately the same as that of RW-ℓ2,1-SVD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于压缩感知的ESPAR天线到达方向估计——重加权贪婪块坐标下降算法
本文研究了基于压缩感知的电子可控寄生阵列辐射天线(ESPAR)的到达方向估计问题。针对ESPAR天线,给出了基于过完备字典和采样网格的DoA估计问题的波束方向图和稀疏模型。将DoA估计问题表述为混合范数最小化问题,并介绍了ESPAR天线的电抗域多信号分类(RD-MUSIC)空间频谱。在此基础上,提出了基于ESPAR的重加权贪婪块坐标下降(RW- gbcd)和重加权21,1 - svd (RW- 21,1 - svd)算法。并将RW-GBCD算法与GBCD、1,2 - svd和RD-MUSIC算法的DoA估计性能进行了比较。RW- gbcd与RW- l1,2 - svd相比,计算复杂度更低。仿真结果表明,RW-GBCD算法的性能优于GBCD算法和l1,2 - svd算法。当角度分离小于10°时,RW- l1,2 - svd优于RW- gbcd。然而,当角度分离大于10°时,RW- gbcd在均方根误差(RMSE)方面的性能与RW- l1,2 - svd大致相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved target-tracking process in PCL Evasion and causative attacks with adversarial deep learning Performance of selection DF scheme for a relay system with non-identical Rician fading Single-channel blind separation of co-frequency PSK signals with unknown carrier frequency offsets Design of a software defined radio-based tactical DSA network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1