ARMA modelling based on root cepstral deconvolution

S. Sarpal, E. Chilton
{"title":"ARMA modelling based on root cepstral deconvolution","authors":"S. Sarpal, E. Chilton","doi":"10.1109/ICDSP.2002.1028198","DOIUrl":null,"url":null,"abstract":"Cepstral deconvolution has been successfully applied to many diverse fields, such as speech and seismic analysis. Thus far, all cepstral modelling performance has been empirical, relying on the judgement of the designer. A novel method for measuring root cepstral ARMA modelling performance is proposed, by introducing a cost function applied directly to the root cepstral domain. It is, therefore, possible to demonstrate the optimised modelling of an ARMA process and show that its performance is superior to that of a FIR Wiener filter and linear prediction.","PeriodicalId":351073,"journal":{"name":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","volume":"120 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2002.1028198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Cepstral deconvolution has been successfully applied to many diverse fields, such as speech and seismic analysis. Thus far, all cepstral modelling performance has been empirical, relying on the judgement of the designer. A novel method for measuring root cepstral ARMA modelling performance is proposed, by introducing a cost function applied directly to the root cepstral domain. It is, therefore, possible to demonstrate the optimised modelling of an ARMA process and show that its performance is superior to that of a FIR Wiener filter and linear prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于根倒谱反卷积的ARMA建模
倒谱反褶积已经成功地应用于许多不同的领域,如语音和地震分析。迄今为止,所有的倒谱建模性能都是经验性的,依赖于设计师的判断。通过引入直接应用于根倒谱域的代价函数,提出了一种测量根倒谱ARMA建模性能的新方法。因此,有可能证明ARMA过程的优化建模,并表明其性能优于FIR维纳滤波器和线性预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
H/sub /spl infin// bounded optimal updating - down-dating algorithm A systematic approach to seizure prediction using genetic and classifier based feature selection A prognostic-classification system based on a probabilistic NN for predicting urine bladder cancer recurrence Implementation of real-time AMDF pitch-detection for voice gender normalisation Fourier filtering of continuous global surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1