ECG Biometric Recognition Without Fiducial Detection

D. Hatzinakos
{"title":"ECG Biometric Recognition Without Fiducial Detection","authors":"D. Hatzinakos","doi":"10.1109/BCC.2006.4341628","DOIUrl":null,"url":null,"abstract":"Security concerns increase as the technology for falsification advances. There are strong evidences that a difficult to falsify biometric, the human heartbeat, can be used for identity recognition. Existing approaches address the problem by using electrocardiogram (ECG) data and the fiducials of the different parts of the heartrate. However, the current fiducial detection tools are inadequate for this application since the boundaries of waveforms are difficult to detect, locate and define. In this paper, an ECG biometric recognition method that does not require any waveform detections is introduced based on classification of coefficients from the discrete cosine transform (DCT) of the Autocorrelation (AC) sequence of ECG data segments. Low false negative rates, low false positive rates and a 100% subject recognition rate for healthy subjects can be achieved for parameters that are suitable for the database.","PeriodicalId":226152,"journal":{"name":"2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"279","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCC.2006.4341628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 279

Abstract

Security concerns increase as the technology for falsification advances. There are strong evidences that a difficult to falsify biometric, the human heartbeat, can be used for identity recognition. Existing approaches address the problem by using electrocardiogram (ECG) data and the fiducials of the different parts of the heartrate. However, the current fiducial detection tools are inadequate for this application since the boundaries of waveforms are difficult to detect, locate and define. In this paper, an ECG biometric recognition method that does not require any waveform detections is introduced based on classification of coefficients from the discrete cosine transform (DCT) of the Autocorrelation (AC) sequence of ECG data segments. Low false negative rates, low false positive rates and a 100% subject recognition rate for healthy subjects can be achieved for parameters that are suitable for the database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无基准检测的心电生物特征识别
随着伪造技术的进步,对安全的担忧也在增加。有强有力的证据表明,一种难以伪造的生物特征,即人类的心跳,可以用于身份识别。现有的方法通过使用心电图(ECG)数据和心脏不同部位的基准来解决这个问题。然而,目前的基准检测工具不适合这种应用,因为波形的边界难以检测、定位和定义。本文提出了一种不需要波形检测的心电生物特征识别方法,该方法基于心电数据段自相关序列的离散余弦变换(DCT)系数分类。对于适合数据库的参数,可以实现低假阴性率、低假阳性率和100%的健康受试者识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How Low Can You Go? Low Resolution Face Recognition Study Using Kernel Correlation Feature Analysis on the FRGCv2 dataset Using Biometric Verification to Estimate Identification Performance Segmenting Non-Ideal Irises Using Geodesic Active Contours Gait Recognition Through MPCA Plus LDA 3D Touchless Fingerprints: Compatibility with Legacy Rolled Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1