{"title":"ECG Biometric Recognition Without Fiducial Detection","authors":"D. Hatzinakos","doi":"10.1109/BCC.2006.4341628","DOIUrl":null,"url":null,"abstract":"Security concerns increase as the technology for falsification advances. There are strong evidences that a difficult to falsify biometric, the human heartbeat, can be used for identity recognition. Existing approaches address the problem by using electrocardiogram (ECG) data and the fiducials of the different parts of the heartrate. However, the current fiducial detection tools are inadequate for this application since the boundaries of waveforms are difficult to detect, locate and define. In this paper, an ECG biometric recognition method that does not require any waveform detections is introduced based on classification of coefficients from the discrete cosine transform (DCT) of the Autocorrelation (AC) sequence of ECG data segments. Low false negative rates, low false positive rates and a 100% subject recognition rate for healthy subjects can be achieved for parameters that are suitable for the database.","PeriodicalId":226152,"journal":{"name":"2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"279","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCC.2006.4341628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 279
Abstract
Security concerns increase as the technology for falsification advances. There are strong evidences that a difficult to falsify biometric, the human heartbeat, can be used for identity recognition. Existing approaches address the problem by using electrocardiogram (ECG) data and the fiducials of the different parts of the heartrate. However, the current fiducial detection tools are inadequate for this application since the boundaries of waveforms are difficult to detect, locate and define. In this paper, an ECG biometric recognition method that does not require any waveform detections is introduced based on classification of coefficients from the discrete cosine transform (DCT) of the Autocorrelation (AC) sequence of ECG data segments. Low false negative rates, low false positive rates and a 100% subject recognition rate for healthy subjects can be achieved for parameters that are suitable for the database.