Deep Convolutional Neural Network with Segmentation Techniques for Chest X-Ray Analysis

Binquan Wang, Zeyuan Wu, Zakir Ullah Khan, Chenglin Liu, Ming Zhu
{"title":"Deep Convolutional Neural Network with Segmentation Techniques for Chest X-Ray Analysis","authors":"Binquan Wang, Zeyuan Wu, Zakir Ullah Khan, Chenglin Liu, Ming Zhu","doi":"10.1109/ICIEA.2019.8834117","DOIUrl":null,"url":null,"abstract":"The deep ConvNets is suitable for learning the mapping between CXR gradients. This paper proposes an example segmentation algorithm based on deep learning applied to xray medical image automatic segmentation annotation. The basic convolutional neural network is used to extract the feature map of the image, and the corresponding branch structure: classification, regression, and mask that can complete the automatic analysis of the image's infrastructure. Our method is evaluated on a dataset that consisted of 180 cases of real two-exposure dual-energy subtraction chest radiographs. Meanwhile, we design histogram averaging and data augmentation to enhance the low contrast image. Finally, we visualize the image and the good results have been achieved in the segmentation and labeling of clavicle and rib. We hope that our research will provide a good prospect for the application of deep learning in automatic segmentation and labeling of medical images.","PeriodicalId":311302,"journal":{"name":"2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2019.8834117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The deep ConvNets is suitable for learning the mapping between CXR gradients. This paper proposes an example segmentation algorithm based on deep learning applied to xray medical image automatic segmentation annotation. The basic convolutional neural network is used to extract the feature map of the image, and the corresponding branch structure: classification, regression, and mask that can complete the automatic analysis of the image's infrastructure. Our method is evaluated on a dataset that consisted of 180 cases of real two-exposure dual-energy subtraction chest radiographs. Meanwhile, we design histogram averaging and data augmentation to enhance the low contrast image. Finally, we visualize the image and the good results have been achieved in the segmentation and labeling of clavicle and rib. We hope that our research will provide a good prospect for the application of deep learning in automatic segmentation and labeling of medical images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度卷积神经网络分割技术的胸部x射线分析
深度卷积神经网络适用于学习CXR梯度之间的映射。本文提出了一种基于深度学习的分割算法示例,应用于x射线医学图像的自动分割标注。使用基本卷积神经网络提取图像的特征图,以及相应的分支结构:分类、回归、掩码,可以完成对图像基础结构的自动分析。我们的方法在一个由180例真实的两次曝光双能量减影胸片组成的数据集上进行了评估。同时,我们设计了直方图平均和数据增强来增强低对比度图像。最后对图像进行可视化处理,在锁骨和肋骨的分割和标记方面取得了良好的效果。我们希望我们的研究能为深度学习在医学图像自动分割和标注中的应用提供一个良好的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acoustic Sensors to Measure Speed of Oil Flow in Downhole Pipes Energy efficiency analysis of a liquefied natural gas and electric power combined transmission system Design and analysis of a novel tip-tilt stage with high precision for space applications Fault diagnosis of wind turbine bearing using synchrosqueezing wavelet transform and order analysis Smart Home Energy Management Optimization Method Considering ESS and PEV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1