{"title":"IEEE 802.11ad Communication Quality Measurement in In-vehicle Wireless Communication with Real Machines","authors":"Ryoko Nino, T. Nishio, T. Murase","doi":"10.1109/UEMCON51285.2020.9298087","DOIUrl":null,"url":null,"abstract":"This paper demonstrates the feasibility of IEEE 802.11ad-based in-vehicle communication for a wireless harness. IEEE 802.11ad millimeter-wave (mmWave) communication enables high-speed wireless transmission, and its short communication range prevents harmful interference from other vehicles. However, in an in-vehicle environment, the received power of IEEE 802.11ad-based mmWave communications can be largely and easily attenuated by obstacles such as humans and the vehicle interior. Moreover, mmWave signals from adjacent vehicles can penetrate through vehicle windows and cause harmful interference. In this paper, we report the experimental results of in-vehicle communications using an actual vehicle and IEEE 802.11ad devices in an anechoic chamber. The experimental results demonstrate that IEEE 802.11ad-based in-vehicle communication can achieve a throughput of several hundred megabits per second, which is almost equivalent to that in achieved free space; this throughput can even be achieved when there are multiple obstacles in a vehicle and when adjacent vehicles (i.e., interferers) are in close proximity.","PeriodicalId":433609,"journal":{"name":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON51285.2020.9298087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This paper demonstrates the feasibility of IEEE 802.11ad-based in-vehicle communication for a wireless harness. IEEE 802.11ad millimeter-wave (mmWave) communication enables high-speed wireless transmission, and its short communication range prevents harmful interference from other vehicles. However, in an in-vehicle environment, the received power of IEEE 802.11ad-based mmWave communications can be largely and easily attenuated by obstacles such as humans and the vehicle interior. Moreover, mmWave signals from adjacent vehicles can penetrate through vehicle windows and cause harmful interference. In this paper, we report the experimental results of in-vehicle communications using an actual vehicle and IEEE 802.11ad devices in an anechoic chamber. The experimental results demonstrate that IEEE 802.11ad-based in-vehicle communication can achieve a throughput of several hundred megabits per second, which is almost equivalent to that in achieved free space; this throughput can even be achieved when there are multiple obstacles in a vehicle and when adjacent vehicles (i.e., interferers) are in close proximity.