Laurent Demonet, O. Iyama, Nathan Reading, I. Reiten, Hugh Thomas
{"title":"Lattice theory of torsion classes: Beyond 𝜏-tilting theory","authors":"Laurent Demonet, O. Iyama, Nathan Reading, I. Reiten, Hugh Thomas","doi":"10.1090/btran/100","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to establish a lattice theoretical framework to study the partially ordered set <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif t sans-serif o sans-serif r sans-serif s upper A\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">t</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">o</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">r</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">s</mml:mi>\n </mml:mrow>\n <mml:mi>A</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathsf {tors} A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of torsion classes over a finite-dimensional algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We show that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif t sans-serif o sans-serif r sans-serif s upper A\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">t</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">o</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">r</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">s</mml:mi>\n </mml:mrow>\n <mml:mi>A</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathsf {tors} A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a complete lattice which enjoys very strong properties, as <italic>bialgebraicity</italic> and <italic>complete semidistributivity</italic>. Thus its Hasse quiver carries the important part of its structure, and we introduce the brick labelling of its Hasse quiver and use it to study lattice congruences of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif t sans-serif o sans-serif r sans-serif s upper A\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">t</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">o</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">r</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">s</mml:mi>\n </mml:mrow>\n <mml:mi>A</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathsf {tors} A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In particular, we give a representation-theoretical interpretation of the so-called <italic>forcing order</italic>, and we prove that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif t sans-serif o sans-serif r sans-serif s upper A\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">t</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">o</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">r</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">s</mml:mi>\n </mml:mrow>\n <mml:mi>A</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathsf {tors} A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is <italic>completely congruence uniform</italic>. When <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I\">\n <mml:semantics>\n <mml:mi>I</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">I</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a two-sided ideal of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif t sans-serif o sans-serif r sans-serif s left-parenthesis upper A slash upper I right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">t</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">o</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">r</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">s</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>A</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>I</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathsf {tors} (A/I)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a lattice quotient of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif t sans-serif o sans-serif r sans-serif s upper A\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">t</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">o</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">r</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">s</mml:mi>\n </mml:mrow>\n <mml:mi>A</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathsf {tors} A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> which is called an <italic>algebraic quotient</italic>, and the corresponding lattice congruence is called an <italic>algebraic congruence</italic>. The second part of this paper consists in studying algebraic congruences. We characterize the arrows of the Hasse quiver of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif t sans-serif o sans-serif r sans-serif s upper A\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">t</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">o</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">r</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">s</mml:mi>\n </mml:mrow>\n <mml:mi>A</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathsf {tors} A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> that are contracted by an algebraic congruence in terms of the brick labelling. In the third part, we study in detail the case of preprojective algebras <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Pi\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Π<!-- Π --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Pi</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, for which <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif t sans-serif o sans-serif r sans-serif s normal upper Pi\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">t</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">o</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">r</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">s</mml:mi>\n </mml:mrow>\n <mml:mi mathvariant=\"normal\">Π<!-- Π --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathsf {tors} \\Pi</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the Weyl group endowed with the weak order. In particular, we give a new, more representation theoretical proof of the isomorphism between <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif t sans-serif o sans-serif r sans-serif s k upper Q\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">t</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">o</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">r</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">s</mml:mi>\n </mml:mrow>\n <mml:mi>k</mml:mi>\n <mml:mi>Q</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathsf {tors} k Q</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and the Cambrian lattice when <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q\">\n <mml:semantics>\n <mml:mi>Q</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">Q</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a Dynkin quiver. We also prove that, in type <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the algebraic quotients of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sans-serif t sans-serif o sans-serif r sans-serif s normal upper Pi\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">t</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">o</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">r</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">s</mml:mi>\n </mml:mrow>\n <mml:mi mathvariant=\"normal\">Π<!-- Π --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathsf {tors} \\Pi</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are exactly its Hasse-regular lattice quotients.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
The aim of this paper is to establish a lattice theoretical framework to study the partially ordered set torsA\mathsf {tors} A of torsion classes over a finite-dimensional algebra AA. We show that torsA\mathsf {tors} A is a complete lattice which enjoys very strong properties, as bialgebraicity and complete semidistributivity. Thus its Hasse quiver carries the important part of its structure, and we introduce the brick labelling of its Hasse quiver and use it to study lattice congruences of torsA\mathsf {tors} A. In particular, we give a representation-theoretical interpretation of the so-called forcing order, and we prove that torsA\mathsf {tors} A is completely congruence uniform. When II is a two-sided ideal of AA, tors(A/I)\mathsf {tors} (A/I) is a lattice quotient of torsA\mathsf {tors} A which is called an algebraic quotient, and the corresponding lattice congruence is called an algebraic congruence. The second part of this paper consists in studying algebraic congruences. We characterize the arrows of the Hasse quiver of torsA\mathsf {tors} A that are contracted by an algebraic congruence in terms of the brick labelling. In the third part, we study in detail the case of preprojective algebras Π\Pi, for which torsΠ\mathsf {tors} \Pi is the Weyl group endowed with the weak order. In particular, we give a new, more representation theoretical proof of the isomorphism between torskQ\mathsf {tors} k Q and the Cambrian lattice when QQ is a Dynkin quiver. We also prove that, in type AA, the algebraic quotients of torsΠ\mathsf {tors} \Pi are exactly its Hasse-regular lattice quotients.