Experimental verification of suppressing power fluctuation in photovoltaic generation system using water electrolyzer

A. Takahashi, J. Imai, S. Funabiki
{"title":"Experimental verification of suppressing power fluctuation in photovoltaic generation system using water electrolyzer","authors":"A. Takahashi, J. Imai, S. Funabiki","doi":"10.1109/INTLEC.2017.8214196","DOIUrl":null,"url":null,"abstract":"This paper develops an emulator simulating the power smoothing control for the photovoltaic generation system with an energy storage system using a water electrolyzer and realizes experimental verification. In this system, the fluctuating components of the photovoltaic generation power are converted to hydrogen and stored. The availability of this system is evaluated by means of the suppression effect of the power fluctuating components in the load frequency control region and the amount of produced hydrogen for a day. In the emulator with the rated power of 200 W for the photovoltaic generation system, the amount of produced hydrogen was 2.11 mol. This result corresponds to 8.22×103 mol for the photovoltaic system whose rated power is 800 kW. Furthermore, the fluctuating components in the load frequency control region were reduced by 47.3%.","PeriodicalId":366207,"journal":{"name":"2017 IEEE International Telecommunications Energy Conference (INTELEC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Telecommunications Energy Conference (INTELEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTLEC.2017.8214196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper develops an emulator simulating the power smoothing control for the photovoltaic generation system with an energy storage system using a water electrolyzer and realizes experimental verification. In this system, the fluctuating components of the photovoltaic generation power are converted to hydrogen and stored. The availability of this system is evaluated by means of the suppression effect of the power fluctuating components in the load frequency control region and the amount of produced hydrogen for a day. In the emulator with the rated power of 200 W for the photovoltaic generation system, the amount of produced hydrogen was 2.11 mol. This result corresponds to 8.22×103 mol for the photovoltaic system whose rated power is 800 kW. Furthermore, the fluctuating components in the load frequency control region were reduced by 47.3%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用水电解槽抑制光伏发电系统功率波动的实验验证
本文开发了一种仿真器,对采用电解水的储能光伏发电系统进行功率平滑控制仿真,并进行了实验验证。在这个系统中,光伏发电功率的波动部分被转换成氢气并储存起来。通过对负荷频控区功率波动分量的抑制效果和一天产氢量来评价该系统的有效性。在光伏发电系统额定功率为200w的仿真器中,产氢量为2.11 mol。对于额定功率为800kw的光伏系统,该结果对应于8.22×103 mol。此外,负载频率控制区域的波动分量减少了47.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conducted noise prediction for zero-crossing issue in totem-pole bridgeless PFC converter An improved model predictive controller for highly reliable grid connected photovoltaic multilevel inverters Analytical investigation of interleaved DC-DC converter using closed-coupled inductor with phase drive control Estimation of the dynamic leakage current of a supercapacitor in energy harvesting powered autonomous wireless sensor nodes Demand response using air conditioner
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1