Hidden semi-Markov model based monitoring algorithm for multimode processes

Zhijiang Lou, Youqing Wang
{"title":"Hidden semi-Markov model based monitoring algorithm for multimode processes","authors":"Zhijiang Lou, Youqing Wang","doi":"10.1109/DDCLS.2017.8068046","DOIUrl":null,"url":null,"abstract":"Several studies have adopted hidden Markov model (HMM) to monitor multimode processes. The drawback of HMM is that its inherent duration probability density is exponential and hence it is inappropriate for the modeling of multimode processes. To address this problem, hidden semi-Markov model (HSMM), which introduces the mode duration probability into HMM, is combined with principal component analysis (PCA) in this paper, named as HSMM-PCA. With the restriction of mode duration probability, HSMM-PCA can successfully identify the operation mode affiliation and build the precise PCA model for each mode. As a result, HSMM-PCA is more sensitive to abnormal conditions and has better fault detection ability for multimode processes.","PeriodicalId":419114,"journal":{"name":"2017 6th Data Driven Control and Learning Systems (DDCLS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th Data Driven Control and Learning Systems (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2017.8068046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Several studies have adopted hidden Markov model (HMM) to monitor multimode processes. The drawback of HMM is that its inherent duration probability density is exponential and hence it is inappropriate for the modeling of multimode processes. To address this problem, hidden semi-Markov model (HSMM), which introduces the mode duration probability into HMM, is combined with principal component analysis (PCA) in this paper, named as HSMM-PCA. With the restriction of mode duration probability, HSMM-PCA can successfully identify the operation mode affiliation and build the precise PCA model for each mode. As a result, HSMM-PCA is more sensitive to abnormal conditions and has better fault detection ability for multimode processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于隐半马尔可夫模型的多模过程监控算法
一些研究采用隐马尔可夫模型(HMM)来监测多模过程。HMM的缺点是其固有的持续时间概率密度是指数型的,因此不适合多模过程的建模。为了解决这一问题,本文将隐式半马尔可夫模型(HSMM)与主成分分析(PCA)相结合,将模态持续概率引入HMM。在模态持续概率的约束下,HSMM-PCA可以成功地识别出运行模式的隶属关系,并为每个模式建立精确的主成分分析模型。因此,HSMM-PCA对异常情况更敏感,对多模式过程具有更好的故障检测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-free adaptive MIMO control algorithm application in polishing robot Multiple-fault diagnosis of analog circuit with fault tolerance Iterative learning control for switched singular systems Active disturbance rejection generalized predictive control and its application on large time-delay systems Robust ADRC for nonlinear time-varying system with uncertainties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1