{"title":"Active vibration control of piezoelectricity cantilever beam using an adaptive feedforward control method","authors":"Jun-Zhou Yue, Qiao Zhu","doi":"10.1109/DDCLS.2017.8068055","DOIUrl":null,"url":null,"abstract":"This work is focused on the active vibration control of piezoelectric cantilever beam, where an adaptive feeedforward controller (AFC) is utilized to reject the vibration with unknown multiple frequencies. First, the experiment setup and its mathematical model are introduced. Because the channel between the disturbance and the vibration output is unknown in practice, a concept of equivalent input disturbance (EID) is used to put a equivalent disturbance into the input channel. In this situation, the vibration control can be realized by setting the control input be the identified EID. Then, for the disturbance with known frequencies, the AFC is introduced to reject the disturbance but is sensitive to the frequencies. In order to accurately identify the unknown frequencies of disturbance in presence of the random disturbances and un-modeled nonlinear dynamics, the time-frequency-analysis method is adopted to precisely identify the unknown frequencies of the disturbance. Finally, experiments results demonstrate the efficiency of the AFC algorithm.","PeriodicalId":419114,"journal":{"name":"2017 6th Data Driven Control and Learning Systems (DDCLS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th Data Driven Control and Learning Systems (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2017.8068055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This work is focused on the active vibration control of piezoelectric cantilever beam, where an adaptive feeedforward controller (AFC) is utilized to reject the vibration with unknown multiple frequencies. First, the experiment setup and its mathematical model are introduced. Because the channel between the disturbance and the vibration output is unknown in practice, a concept of equivalent input disturbance (EID) is used to put a equivalent disturbance into the input channel. In this situation, the vibration control can be realized by setting the control input be the identified EID. Then, for the disturbance with known frequencies, the AFC is introduced to reject the disturbance but is sensitive to the frequencies. In order to accurately identify the unknown frequencies of disturbance in presence of the random disturbances and un-modeled nonlinear dynamics, the time-frequency-analysis method is adopted to precisely identify the unknown frequencies of the disturbance. Finally, experiments results demonstrate the efficiency of the AFC algorithm.