Application of rough ensemble classifier to web services categorization and focused crawling

S. Saha, C. A. Murthy, S. Pal
{"title":"Application of rough ensemble classifier to web services categorization and focused crawling","authors":"S. Saha, C. A. Murthy, S. Pal","doi":"10.3233/WIA-2010-0186","DOIUrl":null,"url":null,"abstract":"This paper discusses the applications of rough ensemble classifier [27] in two emerging problems of web mining, the categorization of web services and the topic specific web crawling. Both applications, discussed here, consist of two major steps: (1) split of feature space based on internal tag structure of web services and hypertext to represent in a tensor space model, and (2) combining classifications obtained on different tensor components using rough ensemble classifier. In the first application we have discussed the classification of web services. Two step improvement on the existing classification results of web services has been shown here. In the first step we achieve better classification results over existing, by using tensor space model. In the second step further improvement of the results has been obtained by using Rough set based ensemble classifier. In the second application we have discussed the focused crawling using rough ensemble prediction. Our experiment regarding this application has provided better Harvest rate and better Target recall for focused crawling.","PeriodicalId":263450,"journal":{"name":"Web Intell. Agent Syst.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intell. Agent Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/WIA-2010-0186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper discusses the applications of rough ensemble classifier [27] in two emerging problems of web mining, the categorization of web services and the topic specific web crawling. Both applications, discussed here, consist of two major steps: (1) split of feature space based on internal tag structure of web services and hypertext to represent in a tensor space model, and (2) combining classifications obtained on different tensor components using rough ensemble classifier. In the first application we have discussed the classification of web services. Two step improvement on the existing classification results of web services has been shown here. In the first step we achieve better classification results over existing, by using tensor space model. In the second step further improvement of the results has been obtained by using Rough set based ensemble classifier. In the second application we have discussed the focused crawling using rough ensemble prediction. Our experiment regarding this application has provided better Harvest rate and better Target recall for focused crawling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粗糙集成分类器在web服务分类和集中爬行中的应用
本文讨论了粗糙集成分类器[27]在web挖掘的两个新兴问题中的应用,即web服务的分类和特定主题的web爬行。本文讨论的这两种应用都包括两个主要步骤:(1)基于web服务和超文本的内部标签结构拆分特征空间,并在张量空间模型中表示;(2)使用粗糙集成分类器组合在不同张量分量上获得的分类。在第一个应用程序中,我们讨论了web服务的分类。这里展示了对现有web服务分类结果的两步改进。在第一步中,我们使用张量空间模型获得了比现有的更好的分类结果。第二步采用基于粗糙集的集成分类器对结果进行了进一步改进。在第二个应用中,我们讨论了使用粗糙集成预测的聚焦爬行。我们关于这个应用程序的实验为集中爬行提供了更好的收获率和更好的目标召回。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting cyberbullying in social networks using multi-agent system Scalable approximating SVD algorithm for recommender systems Web usage mining based recommender systems using implicit heterogeneous data: - A Particle Swarm Optimization based clustering approach Agent-based problem solving methods in Big Data environment Multi-agent orienteering problem with time-dependent capacity constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1