B-Spline Level Set For Drosophila Image Segmentation

Rim Rahali, Yassine Ben Salem, Noura Dridi, H. Dahman
{"title":"B-Spline Level Set For Drosophila Image Segmentation","authors":"Rim Rahali, Yassine Ben Salem, Noura Dridi, H. Dahman","doi":"10.1109/ICIP40778.2020.9191177","DOIUrl":null,"url":null,"abstract":"Segmentation of biological images is a challenging task, due to non convex shapes, intensity inhomogeneity and clustered cells. To address these issues, a new algorithm is proposed based on the B-spline level set method. The implicit function of the level set is modelled as a continuous parametric function represented with the B-spline basis. It is different from the discrete formulation associated with conventional level set. In this paper the proposed framework takes into account properties of biological images. The algorithm is applied to Drosophila images, and compared to conventional level set and Marker Controlled Watershed (MCW). Results show good performance in term of the DICE coefficient, for noisy and noiseless images.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9191177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Segmentation of biological images is a challenging task, due to non convex shapes, intensity inhomogeneity and clustered cells. To address these issues, a new algorithm is proposed based on the B-spline level set method. The implicit function of the level set is modelled as a continuous parametric function represented with the B-spline basis. It is different from the discrete formulation associated with conventional level set. In this paper the proposed framework takes into account properties of biological images. The algorithm is applied to Drosophila images, and compared to conventional level set and Marker Controlled Watershed (MCW). Results show good performance in term of the DICE coefficient, for noisy and noiseless images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
果蝇图像分割的b样条水平集
由于生物图像的非凸形状、强度不均匀性和细胞聚集性,生物图像的分割是一项具有挑战性的任务。为了解决这些问题,提出了一种基于b样条水平集方法的新算法。将水平集的隐函数建模为用b样条基表示的连续参数函数。它不同于传统水平集的离散公式。本文提出的框架考虑了生物图像的特性。将该算法应用于果蝇图像,并与常规水平集和标记控制分水岭(Marker Controlled Watershed, MCW)进行了比较。结果表明,无论对有噪图像还是无噪图像,该方法都具有良好的DICE系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Adversarial Active Learning With Model Uncertainty For Image Classification Emotion Transformation Feature: Novel Feature For Deception Detection In Videos Object Segmentation In Electrical Impedance Tomography For Tactile Sensing A Syndrome-Based Autoencoder For Point Cloud Geometry Compression A Comparison Of Compressed Sensing And Dnn Based Reconstruction For Ghost Motion Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1