MA-model identification using modulated cumulants

T. Kaiser
{"title":"MA-model identification using modulated cumulants","authors":"T. Kaiser","doi":"10.1109/DSP.1994.379853","DOIUrl":null,"url":null,"abstract":"In this paper we present a new linear method for estimating the parameters of a moving average model from modulated cumulants of the observations of the system output. The input sequence must be non-Gaussian with some special properties described in the text. Both recursive closed-form and batch least-squares versions of the parameter estimator are presented. The proposed linear method utilizes a complete set of the relevant output statistics, so it should lead to more accurate parameter estimates compared to other linear methods. This property is illustrated through simulations. Furthermore it uses two different cumulants of arbitrary order and is therefore not restricted to the second and third order case.<<ETX>>","PeriodicalId":189083,"journal":{"name":"Proceedings of IEEE 6th Digital Signal Processing Workshop","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE 6th Digital Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSP.1994.379853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we present a new linear method for estimating the parameters of a moving average model from modulated cumulants of the observations of the system output. The input sequence must be non-Gaussian with some special properties described in the text. Both recursive closed-form and batch least-squares versions of the parameter estimator are presented. The proposed linear method utilizes a complete set of the relevant output statistics, so it should lead to more accurate parameter estimates compared to other linear methods. This property is illustrated through simulations. Furthermore it uses two different cumulants of arbitrary order and is therefore not restricted to the second and third order case.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用调制累积量的ma模型识别
本文提出了一种从系统输出观测的调制累积量估计移动平均模型参数的新线性方法。输入序列必须是非高斯序列,并具有文中描述的一些特殊属性。给出了参数估计器的递归闭式和批最小二乘两种形式。所提出的线性方法利用了一套完整的相关输出统计数据,因此与其他线性方法相比,它应该能够产生更准确的参数估计。通过仿真说明了这一特性。此外,它使用任意阶的两种不同的累积量,因此不限于二阶和三阶情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Teaching DSP using Matlab Orthogonalization of Gaussian signals for Volterra system identification Filter design to guarantee convergence of the pseudolinear regression IIR adaptive algorithm Separation of co-channel FM/PM signals using the discrete polynomial-phase transform Decorrelation algorithm for blind decision feedback equalizer with lattice structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1