Safe importance sampling based on partial posteriors and neural variational approximations

F. Llorente, E. Curbelo, L. Martino, P. Olmos, D. Delgado
{"title":"Safe importance sampling based on partial posteriors and neural variational approximations","authors":"F. Llorente, E. Curbelo, L. Martino, P. Olmos, D. Delgado","doi":"10.23919/eusipco55093.2022.9909576","DOIUrl":null,"url":null,"abstract":"In this work, we present two novel importance sampling (IS) methods, which can be considered safe in the sense that they avoid catastrophic scenarios where the IS estimators could have infinite variance. This is obtained by using a population of proposal densities where each one is wider than the posterior distribution. In fact, we consider partial posterior distributions (i.e., considering a smaller number of data) as proposal densities. Neuronal variational approximations are also discussed. The experimental results show the benefits of the proposed schemes.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"PP 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present two novel importance sampling (IS) methods, which can be considered safe in the sense that they avoid catastrophic scenarios where the IS estimators could have infinite variance. This is obtained by using a population of proposal densities where each one is wider than the posterior distribution. In fact, we consider partial posterior distributions (i.e., considering a smaller number of data) as proposal densities. Neuronal variational approximations are also discussed. The experimental results show the benefits of the proposed schemes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于部分后验和神经变分近似的安全重要性抽样
在这项工作中,我们提出了两种新的重要性抽样(IS)方法,它们可以被认为是安全的,因为它们避免了IS估计器可能具有无限方差的灾难性场景。这是通过使用建议密度的总体来获得的,其中每个密度都比后验分布更宽。事实上,我们考虑部分后验分布(即考虑较少数量的数据)作为建议密度。神经变分逼近也进行了讨论。实验结果表明了所提方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Bias in Face Image Quality Assessment Electrically evoked auditory steady state response detection in cochlear implant recipients using a system identification approach Uncovering cortical layers with multi-exponential analysis: a region of interest study Phaseless Passive Synthetic Aperture Imaging with Regularized Wirtinger Flow The faster proximal algorithm, the better unfolded deep learning architecture ? The study case of image denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1