Robust distributed speech recognition using two-stage Filtered Minima Controlled Recursive Averaging

Negar Ghourchian, S. Selouani, D. O'Shaughnessy
{"title":"Robust distributed speech recognition using two-stage Filtered Minima Controlled Recursive Averaging","authors":"Negar Ghourchian, S. Selouani, D. O'Shaughnessy","doi":"10.1109/ASRU.2009.5372925","DOIUrl":null,"url":null,"abstract":"This paper examines the use of a new Filtered Minima-Controlled Recursive Averaging (FMCRA) noise estimation technique as a robust front-end processing to improve the performance of a Distributed Speech Recognition (DSR) system in noisy environments. The noisy speech is enhanced by using a two-stage framework in order to simultaneously address the inefficiency of the Voice Activity Detector (VAD) and to remedy the inadequacies of MCRA. The performance evaluation carried out on the Aurora 2 task showed that the inclusion of FMCRA in the front-end side leads to a significant improvement in DSR accuracy.","PeriodicalId":292194,"journal":{"name":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2009.5372925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper examines the use of a new Filtered Minima-Controlled Recursive Averaging (FMCRA) noise estimation technique as a robust front-end processing to improve the performance of a Distributed Speech Recognition (DSR) system in noisy environments. The noisy speech is enhanced by using a two-stage framework in order to simultaneously address the inefficiency of the Voice Activity Detector (VAD) and to remedy the inadequacies of MCRA. The performance evaluation carried out on the Aurora 2 task showed that the inclusion of FMCRA in the front-end side leads to a significant improvement in DSR accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于两阶段滤波最小控制递归平均的鲁棒分布式语音识别
本文研究了一种新的滤波最小控制递归平均(FMCRA)噪声估计技术作为鲁棒前端处理的使用,以提高分布式语音识别(DSR)系统在噪声环境中的性能。为了同时解决语音活动检测器(VAD)的低效率问题和弥补MCRA的不足,采用两阶段框架对噪声语音进行增强。对极光2号任务进行的性能评估表明,在前端加入FMCRA可以显著提高DSR精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of OOV words by combining acoustic confidence measures with linguistic features Automatic translation from parallel speech: Simultaneous interpretation as MT training data Local and global models for spontaneous speech segment detection and characterization Automatic punctuation generation for speech Response timing generation and response type selection for a spontaneous spoken dialog system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1