Examining the Fine Motor Control Ability of Linear Hand Movement in Virtual Reality

Xin Yi, Xueyang Wang, Jiaqi Li, Hewu Li
{"title":"Examining the Fine Motor Control Ability of Linear Hand Movement in Virtual Reality","authors":"Xin Yi, Xueyang Wang, Jiaqi Li, Hewu Li","doi":"10.1109/VR55154.2023.00058","DOIUrl":null,"url":null,"abstract":"Linear hand movement in mid-air is one of the most fundamental interactions in virtual reality (e.g., when dragging/scaling/manipulating objects and drawing shapes). However, the lack of tactile feedback makes it difficult to precisely control the direction and amplitude of hand movement. In this paper, we conducted three user studies to progressively examine users' ability of fine motor control in 3D linear hand movement tasks. In Study 1, we examined participants' behavioural patterns when drawing straight lines in various directions and lengths, using both the hand and the controller. Results showed that the exhibited stroke length tended to be longer than perceived, regardless of the interaction tool. While displaying the trajectory could help reduce directional and length errors. In Study 2, we further tested the effect of different visual references and found that, compared with an empty room or cluttered scenarios, providing only a virtual table yielded higher input precision and user preference. In Study 3, we repeated Study 2 in real dragging and scaling tasks and verified the generalizability of the findings in terms of input error. Our core finding is that the user's hand moves significantly longer than the task length due to the underestimation of stroke length, yet the error of the Z-axis movement is smaller than that of the X-axis and the Y-axis, and a simple virtual desktop can effectively reduce errors.","PeriodicalId":346767,"journal":{"name":"2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VR55154.2023.00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Linear hand movement in mid-air is one of the most fundamental interactions in virtual reality (e.g., when dragging/scaling/manipulating objects and drawing shapes). However, the lack of tactile feedback makes it difficult to precisely control the direction and amplitude of hand movement. In this paper, we conducted three user studies to progressively examine users' ability of fine motor control in 3D linear hand movement tasks. In Study 1, we examined participants' behavioural patterns when drawing straight lines in various directions and lengths, using both the hand and the controller. Results showed that the exhibited stroke length tended to be longer than perceived, regardless of the interaction tool. While displaying the trajectory could help reduce directional and length errors. In Study 2, we further tested the effect of different visual references and found that, compared with an empty room or cluttered scenarios, providing only a virtual table yielded higher input precision and user preference. In Study 3, we repeated Study 2 in real dragging and scaling tasks and verified the generalizability of the findings in terms of input error. Our core finding is that the user's hand moves significantly longer than the task length due to the underestimation of stroke length, yet the error of the Z-axis movement is smaller than that of the X-axis and the Y-axis, and a simple virtual desktop can effectively reduce errors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
虚拟现实中线性手部运动精细运动控制能力的检验
在半空中的线性手部运动是虚拟现实中最基本的交互之一(例如,当拖动/缩放/操纵对象和绘制形状时)。然而,缺乏触觉反馈使得精确控制手部运动的方向和幅度变得困难。在本文中,我们通过三个用户研究来逐步检验用户在三维线性手部运动任务中的精细运动控制能力。在研究1中,我们检查了参与者在使用手和控制器在不同方向和长度上画直线时的行为模式。结果表明,无论使用何种交互工具,所展示的笔画长度都倾向于比感知到的更长。而显示轨迹可以帮助减少方向和长度误差。在研究2中,我们进一步测试了不同视觉参考的效果,发现与空房间或杂乱的场景相比,只提供虚拟表可以获得更高的输入精度和用户偏好。在研究3中,我们在真实的拖动和缩放任务中重复了研究2,并验证了研究结果在输入误差方面的普遍性。我们的核心发现是,由于对笔划长度的低估,用户的手移动明显长于任务长度,但z轴移动的误差小于x轴和y轴的误差,简单的虚拟桌面可以有效地减少误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simultaneous Scene-independent Camera Localization and Category-level Object Pose Estimation via Multi-level Feature Fusion A study of the influence of AR on the perception, comprehension and projection levels of situation awareness A Large-Scale Study of Proxemics and Gaze in Groups Investigating Guardian Awareness Techniques to Promote Safety in Virtual Reality Locomotion-aware Foveated Rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1