{"title":"Path Kinematics for Combined Discrete and Continuous Event Simulation","authors":"John Barry, Joseph Walsh","doi":"10.1109/ISSC49989.2020.9180203","DOIUrl":null,"url":null,"abstract":"Combined discrete and continuous event simulations provide a means of investigating the influence of the many factors affecting the productivity of complex electromechanical systems. This paper describes algorithms and methods for establishing the path kinematics of Cartesian axes of motion pick and place systems which must avoid varying obstacle profiles and which have the potential for path intersections with other pick and place systems within a shared working environment. Where intersections arise, one pick and place device must, in accordance with pre-established prioritization, decelerate and wait for another pick and place device to vacate the zone of conflict. Path kinematics represent a continuous event aspect of the simulation under development while awaiting permission to proceed represents a discrete event aspect of the simulation. A requirement of the research is that the kinematics only include periods of constant acceleration and constant velocity and that any deceleration must continue substantially along the original path. The algorithm and methods presented are concise and may be applicable and convenient to apply in the path control of Cartesian axis of motion devices.","PeriodicalId":351013,"journal":{"name":"2020 31st Irish Signals and Systems Conference (ISSC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 31st Irish Signals and Systems Conference (ISSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSC49989.2020.9180203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Combined discrete and continuous event simulations provide a means of investigating the influence of the many factors affecting the productivity of complex electromechanical systems. This paper describes algorithms and methods for establishing the path kinematics of Cartesian axes of motion pick and place systems which must avoid varying obstacle profiles and which have the potential for path intersections with other pick and place systems within a shared working environment. Where intersections arise, one pick and place device must, in accordance with pre-established prioritization, decelerate and wait for another pick and place device to vacate the zone of conflict. Path kinematics represent a continuous event aspect of the simulation under development while awaiting permission to proceed represents a discrete event aspect of the simulation. A requirement of the research is that the kinematics only include periods of constant acceleration and constant velocity and that any deceleration must continue substantially along the original path. The algorithm and methods presented are concise and may be applicable and convenient to apply in the path control of Cartesian axis of motion devices.