Mehdi Motevasselin, Beata Gorczyca, Indra Kalinovich, Richard Sparling
{"title":"Bioremediation of Chlorate and Chromium Contamination with Native Microbial Culture in Cold Climate","authors":"Mehdi Motevasselin, Beata Gorczyca, Indra Kalinovich, Richard Sparling","doi":"10.1111/gwmr.12610","DOIUrl":null,"url":null,"abstract":"<p>Chlorate and hexavalent chromium are two chemicals with adverse health effects that may cause groundwater contamination in industrial areas. The objective of this study was to determine if the native microorganisms collected from a site contaminated with chlorate and chromate can lower the concentration of these chemicals in groundwater to acceptable regulatory levels. Several anaerobic microcosm experiments were conducted with synthetic groundwater (media), native microorganisms, acetate as an electron donor, nitrogen, phosphorus, and minerals. The microorganisms utilized 2200 mg/L acetate to remove 1000 mg/L of chlorate and 3 mg/L of hexavalent chromium entirely from the media provided that the groundwater is supplemented with additional nitrogen and phosphorous (with the Carbon:Nitrogen:Phosphorous molar ratio of 100:10:5). The added trace minerals solution prepared based on American Type Culture Collection (ATCC) 1191 medium did not improve the remediation process. Native microbial culture derived from the contaminated site removed the chlorate and chromate from the synthetic groundwater at 20 °C in about 40 days. The same removal was achieved at 10 °C, but in a longer timespan of 80 days. This work confirmed the importance of ensuring the presence of sufficient N and P to stimulate chlorate- and chromate-reducing bacteria in the groundwaters.</p>","PeriodicalId":55081,"journal":{"name":"Ground Water Monitoring and Remediation","volume":"44 1","pages":"46-56"},"PeriodicalIF":1.8000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gwmr.12610","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ground Water Monitoring and Remediation","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gwmr.12610","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Chlorate and hexavalent chromium are two chemicals with adverse health effects that may cause groundwater contamination in industrial areas. The objective of this study was to determine if the native microorganisms collected from a site contaminated with chlorate and chromate can lower the concentration of these chemicals in groundwater to acceptable regulatory levels. Several anaerobic microcosm experiments were conducted with synthetic groundwater (media), native microorganisms, acetate as an electron donor, nitrogen, phosphorus, and minerals. The microorganisms utilized 2200 mg/L acetate to remove 1000 mg/L of chlorate and 3 mg/L of hexavalent chromium entirely from the media provided that the groundwater is supplemented with additional nitrogen and phosphorous (with the Carbon:Nitrogen:Phosphorous molar ratio of 100:10:5). The added trace minerals solution prepared based on American Type Culture Collection (ATCC) 1191 medium did not improve the remediation process. Native microbial culture derived from the contaminated site removed the chlorate and chromate from the synthetic groundwater at 20 °C in about 40 days. The same removal was achieved at 10 °C, but in a longer timespan of 80 days. This work confirmed the importance of ensuring the presence of sufficient N and P to stimulate chlorate- and chromate-reducing bacteria in the groundwaters.
期刊介绍:
Since its inception in 1981, Groundwater Monitoring & Remediation® has been a resource for researchers and practitioners in the field. It is a quarterly journal that offers the best in application oriented, peer-reviewed papers together with insightful articles from the practitioner''s perspective. Each issue features papers containing cutting-edge information on treatment technology, columns by industry experts, news briefs, and equipment news. GWMR plays a unique role in advancing the practice of the groundwater monitoring and remediation field by providing forward-thinking research with practical solutions.