Multi user multi keyword searchable encryption scheme supporting user authorization

Yulei Zhang, Haohao Wang, Long Wen, Qiaoling Bai
{"title":"Multi user multi keyword searchable encryption scheme supporting user authorization","authors":"Yulei Zhang, Haohao Wang, Long Wen, Qiaoling Bai","doi":"10.1109/ICISE51755.2020.00113","DOIUrl":null,"url":null,"abstract":"In the big data environment of cloud computing, searchable encryption enables users to selectively access ciphertext data while improving data security. The existing multi-keyword-based encryption schemes have great shortcomings in terms of too large trapdoors and not supporting dynamic authorization of multiple users. Based on this, this paper proposes a multi-user multi-keyword searchable encryption scheme that supports user authorization. This solution supports the data owner to authorize users who access the data, and realizes that the authorized user sends the request for accessing the data to the data owner. Finally, the data owner generates a trapdoor and sends it to the server, and the server sends the result to the user after retrieval. In addition, this solution supports multi-users to dynamically add or withdraw users to ensure data security. This scheme proves that IND-CKA is safe and has the security of keyword trapdoor.","PeriodicalId":340419,"journal":{"name":"2020 International Conference on Information Science and Education (ICISE-IE)","volume":"461 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Information Science and Education (ICISE-IE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISE51755.2020.00113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the big data environment of cloud computing, searchable encryption enables users to selectively access ciphertext data while improving data security. The existing multi-keyword-based encryption schemes have great shortcomings in terms of too large trapdoors and not supporting dynamic authorization of multiple users. Based on this, this paper proposes a multi-user multi-keyword searchable encryption scheme that supports user authorization. This solution supports the data owner to authorize users who access the data, and realizes that the authorized user sends the request for accessing the data to the data owner. Finally, the data owner generates a trapdoor and sends it to the server, and the server sends the result to the user after retrieval. In addition, this solution supports multi-users to dynamically add or withdraw users to ensure data security. This scheme proves that IND-CKA is safe and has the security of keyword trapdoor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持用户授权的多用户多关键字可搜索加密方案
在云计算的大数据环境下,可搜索加密使用户可以选择性地访问密文数据,同时提高数据的安全性。现有的基于多关键字的加密方案存在陷阱门过大、不支持多用户动态授权等缺点。在此基础上,提出了一种支持用户授权的多用户多关键字可搜索加密方案。该解决方案支持数据所有者对访问数据的用户进行授权,并实现授权用户向数据所有者发送访问数据的请求。最后,数据所有者生成一个trapdoor并发送给服务器,服务器检索后将结果发送给用户。此外,该解决方案支持多用户动态添加或退出用户,确保数据安全。该方案证明了IND-CKA是安全的,具有关键字陷门的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application research of students’ Physical health data based on SPSS The Core Competencies of Chinese College Students Based on Big Data Analysis Research on the Blended teaching of computer basic and application Research on Teaching Performance of Computer Course Based on Big Data Discussion on the Reform of Electronic Information Engineering Graduation Design under the Background of IEET Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1