CompenHR: Efficient Full Compensation for High-resolution Projector

Yuxi Wang, H. Ling, Bingyao Huang
{"title":"CompenHR: Efficient Full Compensation for High-resolution Projector","authors":"Yuxi Wang, H. Ling, Bingyao Huang","doi":"10.1109/VR55154.2023.00029","DOIUrl":null,"url":null,"abstract":"Full projector compensation is a practical task of projector-camera systems. It aims to find a projector input image, named compensation image, such that when projected it cancels the geometric and photometric distortions due to the physical environment and hardware. State-of-the-art methods use deep learning to address this problem and show promising performance for low-resolution setups. However, directly applying deep learning to high-resolution setups is impractical due to the long training time and high memory cost. To address this issue, this paper proposes a practical full compensation solution. Firstly, we design an attention-based grid refinement network to improve geometric correction quality. Secondly, we integrate a novel sampling scheme into an end-to-end compensation network to alleviate computation and introduce attention blocks to preserve key features. Finally, we construct a benchmark dataset for high-resolution projector full compensation. In experiments, our method demonstrates clear advantages in both efficiency and quality.","PeriodicalId":346767,"journal":{"name":"2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VR55154.2023.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Full projector compensation is a practical task of projector-camera systems. It aims to find a projector input image, named compensation image, such that when projected it cancels the geometric and photometric distortions due to the physical environment and hardware. State-of-the-art methods use deep learning to address this problem and show promising performance for low-resolution setups. However, directly applying deep learning to high-resolution setups is impractical due to the long training time and high memory cost. To address this issue, this paper proposes a practical full compensation solution. Firstly, we design an attention-based grid refinement network to improve geometric correction quality. Secondly, we integrate a novel sampling scheme into an end-to-end compensation network to alleviate computation and introduce attention blocks to preserve key features. Finally, we construct a benchmark dataset for high-resolution projector full compensation. In experiments, our method demonstrates clear advantages in both efficiency and quality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CompenHR:高效的全补偿高分辨率投影仪
全放映机补偿是放映机-摄像机系统的一项实际任务。它的目的是找到一个投影仪输入图像,命名为补偿图像,这样在投影时,它可以消除由于物理环境和硬件造成的几何和光度畸变。最先进的方法使用深度学习来解决这个问题,并在低分辨率设置中显示出有希望的性能。然而,由于训练时间长,内存成本高,直接将深度学习应用于高分辨率设置是不切实际的。针对这一问题,本文提出了一种实用的全补偿方案。首先,设计了一种基于注意力的网格细化网络,提高几何校正质量。其次,我们将一种新的采样方案集成到端到端补偿网络中以减轻计算量,并引入注意块以保留关键特征。最后,构建了高分辨率投影仪全补偿的基准数据集。实验表明,该方法在效率和质量上都有明显的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simultaneous Scene-independent Camera Localization and Category-level Object Pose Estimation via Multi-level Feature Fusion A study of the influence of AR on the perception, comprehension and projection levels of situation awareness A Large-Scale Study of Proxemics and Gaze in Groups Investigating Guardian Awareness Techniques to Promote Safety in Virtual Reality Locomotion-aware Foveated Rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1