Zahra Azad, Guowei Yang, R. Agrawal, Daniel Petrisko, Michael B. Taylor, A. Joshi
{"title":"RACE: RISC-V SoC for En/decryption Acceleration on the Edge for Homomorphic Computation","authors":"Zahra Azad, Guowei Yang, R. Agrawal, Daniel Petrisko, Michael B. Taylor, A. Joshi","doi":"10.1145/3531437.3539725","DOIUrl":null,"url":null,"abstract":"As more and more edge devices connect to the cloud to use its storage and compute capabilities, they bring in security and data privacy concerns. Homomorphic Encryption (HE) is a promising solution to maintain data privacy by enabling computations on the encrypted user data in the cloud. While there has been a lot of work on accelerating HE computation in the cloud, little attention has been paid to optimize the en/decryption on the edge. Therefore, in this paper, we present RACE, a custom-designed area- and energy-efficient SoC for en/decryption of data for HE. Owing to similar operations in en/decryption, RACE unifies the en/decryption datapath to save area. RACE efficiently exploits techniques like memory reuse and data reordering to utilize minimal amount of on-chip memory. We evaluate RACE using a complete RTL design containing a RISC-V processor and our unified accelerator. Our analysis shows that, for the end-to-end en/decryption, using RACE leads to, on average, 48 × to 39729 × (for a wide range of security parameters) more energy-efficient solution than purely using a processor.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3531437.3539725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
As more and more edge devices connect to the cloud to use its storage and compute capabilities, they bring in security and data privacy concerns. Homomorphic Encryption (HE) is a promising solution to maintain data privacy by enabling computations on the encrypted user data in the cloud. While there has been a lot of work on accelerating HE computation in the cloud, little attention has been paid to optimize the en/decryption on the edge. Therefore, in this paper, we present RACE, a custom-designed area- and energy-efficient SoC for en/decryption of data for HE. Owing to similar operations in en/decryption, RACE unifies the en/decryption datapath to save area. RACE efficiently exploits techniques like memory reuse and data reordering to utilize minimal amount of on-chip memory. We evaluate RACE using a complete RTL design containing a RISC-V processor and our unified accelerator. Our analysis shows that, for the end-to-end en/decryption, using RACE leads to, on average, 48 × to 39729 × (for a wide range of security parameters) more energy-efficient solution than purely using a processor.