Plant Identification Using New Architecture Convolutional Neural Networks Combine with Replacing the Red of Color Channel Image by Vein Morphology Leaf

H. Huynh, Q. Truong, Tan Kiet Nguyen Thanh, Q. Truong
{"title":"Plant Identification Using New Architecture Convolutional Neural Networks Combine with Replacing the Red of Color Channel Image by Vein Morphology Leaf","authors":"H. Huynh, Q. Truong, Tan Kiet Nguyen Thanh, Q. Truong","doi":"10.1142/s2196888820500116","DOIUrl":null,"url":null,"abstract":"The determination of plant species from field observation requires substantial botanical expertise, which puts it beyond the reach of most nature enthusiasts. Traditional plant species identification is almost impossible for the general public and challenging even for professionals who deal with botanical problems daily such as conservationists, farmers, foresters, and landscape architects. Even for botanists themselves, species identification is often a difficult task. This paper proposes a model deep learning with a new architecture Convolutional Neural Network (CNN) for leaves classifier based on leaf pre-processing extract vein shape data replaced for the red channel of colors. This replacement improves the accuracy of the model significantly. This model experimented on collector leaves data set Flavia leaf data set and the Swedish leaf data set. The classification results indicate that the proposed CNN model is effective for leaf recognition with the best accuracy greater than 98.22%.","PeriodicalId":256649,"journal":{"name":"Vietnam. J. Comput. Sci.","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam. J. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2196888820500116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The determination of plant species from field observation requires substantial botanical expertise, which puts it beyond the reach of most nature enthusiasts. Traditional plant species identification is almost impossible for the general public and challenging even for professionals who deal with botanical problems daily such as conservationists, farmers, foresters, and landscape architects. Even for botanists themselves, species identification is often a difficult task. This paper proposes a model deep learning with a new architecture Convolutional Neural Network (CNN) for leaves classifier based on leaf pre-processing extract vein shape data replaced for the red channel of colors. This replacement improves the accuracy of the model significantly. This model experimented on collector leaves data set Flavia leaf data set and the Swedish leaf data set. The classification results indicate that the proposed CNN model is effective for leaf recognition with the best accuracy greater than 98.22%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于新架构卷积神经网络的植物识别与叶脉形态叶替代颜色通道图像中的红色相结合
通过实地观察确定植物种类需要大量的植物学专业知识,这是大多数自然爱好者所无法企及的。传统的植物物种鉴定对一般公众来说几乎是不可能的,甚至对那些每天处理植物问题的专业人士,如自然资源保护主义者、农民、护林员和景观设计师来说也是一项挑战。即使对植物学家自己来说,物种鉴定也常常是一项艰巨的任务。本文提出了一种基于叶子预处理的卷积神经网络(CNN)叶子分类器深度学习的新架构模型,提取叶脉形状数据替换为红色通道的颜色。这种替换大大提高了模型的准确性。该模型在采集者叶数据集和瑞典叶数据集上进行了实验。分类结果表明,本文提出的CNN模型对树叶识别是有效的,准确率达到98.22%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Arabic Sentiment Analysis Using LSTM Based on Word Embedding Models Synthetic Data Generation for Morphological Analyses of Histopathology Images with Deep Learning Models Generating Popularity-Aware Reciprocal Recommendations Using Siamese Bi-Directional Gated Recurrent Units Network Hyperparameter Optimization of a Parallelized LSTM for Time Series Prediction Natural Language Processing and Sentiment Analysis on Bangla Social Media Comments on Russia-Ukraine War Using Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1