{"title":"Reducing the measurement footprint in the characterization of low-loss materials using the flanged-waveguide measurement geometry","authors":"M. Hyde, M. Havrilla","doi":"10.1109/ICEAA.2010.5652258","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to demonstrate how the flanged-waveguide material-characterization technique, originally designed to characterize lossy materials only, can be extended to accurately extract permittivity and permeability of low-loss materials. Provided in this paper is a summary of the flanged-waveguide technique. This is followed by a discussion of how time-domain gating can be utilized to mitigate the error introduced by waves reflected from the edges of the flanges. Furthermore, it is demonstrated that by utilizing timedomain gating, the cross-sectional dimensions of the flanges can be significantly reduced. Lastly, material measurement results of plexiglass are provided to validate the time-domain gating technique.","PeriodicalId":375707,"journal":{"name":"2010 International Conference on Electromagnetics in Advanced Applications","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Electromagnetics in Advanced Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAA.2010.5652258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The purpose of this paper is to demonstrate how the flanged-waveguide material-characterization technique, originally designed to characterize lossy materials only, can be extended to accurately extract permittivity and permeability of low-loss materials. Provided in this paper is a summary of the flanged-waveguide technique. This is followed by a discussion of how time-domain gating can be utilized to mitigate the error introduced by waves reflected from the edges of the flanges. Furthermore, it is demonstrated that by utilizing timedomain gating, the cross-sectional dimensions of the flanges can be significantly reduced. Lastly, material measurement results of plexiglass are provided to validate the time-domain gating technique.