Yibo Zhu, Xia Zhou, Zengbin Zhang, Lin Zhou, Amin Vahdat, Ben Y. Zhao, Haitao Zheng
{"title":"Cutting the cord: a robust wireless facilities network for data centers","authors":"Yibo Zhu, Xia Zhou, Zengbin Zhang, Lin Zhou, Amin Vahdat, Ben Y. Zhao, Haitao Zheng","doi":"10.1145/2639108.2639140","DOIUrl":null,"url":null,"abstract":"Today's network control and management traffic are limited by their reliance on existing data networks. Fate sharing in this context is highly undesirable, since control traffic has very different availability and traffic delivery requirements. In this paper, we explore the feasibility of building a dedicated wireless facilities network for data centers. We propose Angora, a low-latency facilities network using low-cost, 60GHz beamforming radios that provides robust paths decoupled from the wired network, and flexibility to adapt to workloads and network dynamics. We describe our solutions to address challenges in link coordination, link interference and network failures. Our testbed measurements and simulation results show that Angora enables large number of low-latency control paths to run concurrently, while providing low latency end-to-end message delivery with high tolerance for radio and rack failures.","PeriodicalId":331897,"journal":{"name":"Proceedings of the 20th annual international conference on Mobile computing and networking","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th annual international conference on Mobile computing and networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2639108.2639140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79
Abstract
Today's network control and management traffic are limited by their reliance on existing data networks. Fate sharing in this context is highly undesirable, since control traffic has very different availability and traffic delivery requirements. In this paper, we explore the feasibility of building a dedicated wireless facilities network for data centers. We propose Angora, a low-latency facilities network using low-cost, 60GHz beamforming radios that provides robust paths decoupled from the wired network, and flexibility to adapt to workloads and network dynamics. We describe our solutions to address challenges in link coordination, link interference and network failures. Our testbed measurements and simulation results show that Angora enables large number of low-latency control paths to run concurrently, while providing low latency end-to-end message delivery with high tolerance for radio and rack failures.