A New Self-Organizing Map for Dissimilarity Data

T. Ho-Phuoc, A. Guérin-Dugué
{"title":"A New Self-Organizing Map for Dissimilarity Data","authors":"T. Ho-Phuoc, A. Guérin-Dugué","doi":"10.4018/978-1-59904-849-9.CH182","DOIUrl":null,"url":null,"abstract":"Adaptation of the Self-Organizing Map to dissimilarity data is of a growing interest. For many applications, vector representation is not available and but only proximity data (distance, dissimilarity, similarity, ranks ...). In this article, we present a new adaptation of the SOM algorithm which is compared with two existing ones. Three metrics for quality estimate (quantization and neighborhood) are used for comparison. Numerical experiments on artificial and real data show the algorithm quality. The strong point of the proposed algorithm comes from a more accurate prototype estimate which is one of the difficult parts of Dissimilarity SOM algorithms (DSOM).","PeriodicalId":320314,"journal":{"name":"Encyclopedia of Artificial Intelligence","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-59904-849-9.CH182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Adaptation of the Self-Organizing Map to dissimilarity data is of a growing interest. For many applications, vector representation is not available and but only proximity data (distance, dissimilarity, similarity, ranks ...). In this article, we present a new adaptation of the SOM algorithm which is compared with two existing ones. Three metrics for quality estimate (quantization and neighborhood) are used for comparison. Numerical experiments on artificial and real data show the algorithm quality. The strong point of the proposed algorithm comes from a more accurate prototype estimate which is one of the difficult parts of Dissimilarity SOM algorithms (DSOM).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的不相似数据自组织映射
自组织映射对不同数据的适应越来越受到关注。对于许多应用来说,矢量表示是不可用的,而只能使用接近数据(距离、不相似度、相似度、等级等)。在本文中,我们提出了一种新的自适应SOM算法,并与已有的两种自适应SOM算法进行了比较。质量估计的三个度量(量化和邻域)用于比较。人工数据和实际数据的数值实验表明了该算法的有效性。该算法的优点在于能够更准确地估计原型,而这也是非相似性SOM算法的难点之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emerging Applications in Immersive Technologies Knowledge-Based Systems RBF Networks for Power System Topology Verification Association Rule Mining "Narrative" Information Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1