Classification of Alzheimer's Disease using Low Frequency Fluctuation of rs-fMRI Signals

A. Sadiq, N. Yahya, T. Tang
{"title":"Classification of Alzheimer's Disease using Low Frequency Fluctuation of rs-fMRI Signals","authors":"A. Sadiq, N. Yahya, T. Tang","doi":"10.1109/ICICyTA53712.2021.9689209","DOIUrl":null,"url":null,"abstract":"The resting-state functional magnetic resonance imaging (rs-fMRI) is a non-invasive neuroimaging modality to measure brain activity and helps in the diagnosis of various brain-related disorders. Given the 1/f power spectrum characteristic of brain dynamics, where the energy value is higher at a low frequency than high frequency, it is established that low-frequency oscillations (LFO) provide a better representation of the spontaneous neuronal activity of the brain. In this research, a combination of the amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF) from the resting-state blood oxygen level-dependent (BOLD) signal in the classic band i.e., 0.01-0.1 Hz is used for the classification of Alzheimer's disease (AD) from normal controls (NC). A total of 60 subjects participated in this study consisting of 30 AD patients and 30 NC from Alzheimer's disease neuroimaging initiative (ADNI). The feature selection is performed using minimum-redundancy maximum-relevance (mRMR) and ReliefF algorithm due to the large dimension of rs-fMRI data to be fed to the machine learning (ML) classifier. The proposed AD classification method employing the fusion of ALFF and fALFF obtained the highest classification accuracy of 96.36%, indicating the good potential of the proposed method for the diagnosis of AD, as well as other neurological conditions.","PeriodicalId":448148,"journal":{"name":"2021 International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICyTA53712.2021.9689209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The resting-state functional magnetic resonance imaging (rs-fMRI) is a non-invasive neuroimaging modality to measure brain activity and helps in the diagnosis of various brain-related disorders. Given the 1/f power spectrum characteristic of brain dynamics, where the energy value is higher at a low frequency than high frequency, it is established that low-frequency oscillations (LFO) provide a better representation of the spontaneous neuronal activity of the brain. In this research, a combination of the amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF) from the resting-state blood oxygen level-dependent (BOLD) signal in the classic band i.e., 0.01-0.1 Hz is used for the classification of Alzheimer's disease (AD) from normal controls (NC). A total of 60 subjects participated in this study consisting of 30 AD patients and 30 NC from Alzheimer's disease neuroimaging initiative (ADNI). The feature selection is performed using minimum-redundancy maximum-relevance (mRMR) and ReliefF algorithm due to the large dimension of rs-fMRI data to be fed to the machine learning (ML) classifier. The proposed AD classification method employing the fusion of ALFF and fALFF obtained the highest classification accuracy of 96.36%, indicating the good potential of the proposed method for the diagnosis of AD, as well as other neurological conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用rs-fMRI信号低频波动对阿尔茨海默病进行分类
静息状态功能磁共振成像(rs-fMRI)是一种测量大脑活动的非侵入性神经成像方式,有助于诊断各种脑相关疾病。考虑到脑动力学的1/f功率谱特征,即低频时的能量值高于高频,可以确定低频振荡(LFO)能更好地代表大脑的自发神经元活动。在本研究中,结合静息状态血氧水平依赖(BOLD)信号的低频波动幅度(ALFF)和分数ALFF (fALFF)在经典频带(0.01-0.1 Hz)进行阿尔茨海默病(AD)与正常对照(NC)的分类。本研究共有60名受试者参与,其中30名AD患者和30名来自阿尔茨海默病神经影像学倡议(ADNI)的NC。由于rs-fMRI数据的大维度被馈送到机器学习(ML)分类器,因此使用最小冗余最大相关性(mRMR)和ReliefF算法进行特征选择。采用ALFF和fALFF融合的AD分类方法获得了96.36%的最高分类准确率,表明该方法在AD以及其他神经系统疾病的诊断中具有良好的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced Sentiment Analysis Technique using Machine Learning (B.R.A.G.E technique) Fruit Ripeness Sorting Machine using Color Sensors Comparative Analysis of Community Detection Methods for Link Failure Recovery in Software Defined Networks Secure MQTT Authentication and Message Exchange Methods for IoT Constrained Device SVD-Based Feature Extraction Technique for The Improvement of Effective Connectivity Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1