Differential Image-based Fast and Compatible Convolutional Layers for Multi-core Processors

Sunghoon Hong, Dae-Geun Park
{"title":"Differential Image-based Fast and Compatible Convolutional Layers for Multi-core Processors","authors":"Sunghoon Hong, Dae-Geun Park","doi":"10.1109/ICAIIC57133.2023.10066972","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks with powerful visual image analysis for artificial intelligence are gaining popularity in many research fields, leading to the development of various high-performance algorithms for convolution operators present in these networks. One of these approaches is implemented with general matrix multiplication (GEMM) using the well-known im2col transform for fast convolution operations. In this paper, we propose a multi-core processor-based convolution technique for high-speed convolutional neural networks (CNNs) using differential images. The proposed method improves the convolutional layer's response speed by reducing the computational complexity and using multi-thread technology. In addition, the proposed algorithm has the advantage of being compatible with all types of CNNs. We use the darknet network to evaluate the convolutional layer's performance and show the best performance of the proposed algorithm when using 4-thread parallel processing.","PeriodicalId":105769,"journal":{"name":"2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC57133.2023.10066972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Convolutional neural networks with powerful visual image analysis for artificial intelligence are gaining popularity in many research fields, leading to the development of various high-performance algorithms for convolution operators present in these networks. One of these approaches is implemented with general matrix multiplication (GEMM) using the well-known im2col transform for fast convolution operations. In this paper, we propose a multi-core processor-based convolution technique for high-speed convolutional neural networks (CNNs) using differential images. The proposed method improves the convolutional layer's response speed by reducing the computational complexity and using multi-thread technology. In addition, the proposed algorithm has the advantage of being compatible with all types of CNNs. We use the darknet network to evaluate the convolutional layer's performance and show the best performance of the proposed algorithm when using 4-thread parallel processing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于差分图像的多核处理器快速兼容卷积层
卷积神经网络具有强大的人工智能视觉图像分析能力,在许多研究领域越来越受欢迎,导致了这些网络中各种高性能卷积算子算法的发展。其中一种方法是使用通用矩阵乘法(GEMM)实现的,使用著名的im2col变换进行快速卷积操作。在本文中,我们提出了一种基于多核处理器的卷积技术,用于高速卷积神经网络(cnn)的差分图像。该方法通过降低计算复杂度和采用多线程技术提高了卷积层的响应速度。此外,该算法还具有兼容所有类型cnn的优点。我们使用暗网网络来评估卷积层的性能,并在使用4线程并行处理时显示了所提出算法的最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of AI Educational Datasets Library Using Synthetic Dataset Generation Method Channel Access Control Instead of Random Backoff Algorithm Illegal 3D Content Distribution Tracking System based on DNN Forensic Watermarking Deep Learning-based Spectral Efficiency Maximization in Massive MIMO-NOMA Systems with STAR-RIS Data Pipeline Design for Dangerous Driving Behavior Detection System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1