Trajectory reconstruction for affine structure-from-motion by global and local constraints

H. Ackermann, B. Rosenhahn
{"title":"Trajectory reconstruction for affine structure-from-motion by global and local constraints","authors":"H. Ackermann, B. Rosenhahn","doi":"10.1109/CVPR.2009.5206664","DOIUrl":null,"url":null,"abstract":"The problem of reconstructing a 3D scene from a moving camera can be solved by means of the so-called Factorization method. It directly computes a global solution without the need to merge several partial reconstructions. However, if the trajectories are not complete, i.e. not every feature point could be observed in all the images, this method cannot be used. We use a Factorization-style algorithm for recovering the unobserved feature positions in a non-incremental way. This method uniformly utilizes all data and finds a global solution without any need of sequential or hierarchical merging. Two contributions are made in this work: Firstly, partially known trajectories are completed by minimizing the distance between the subspace and the trajectory within an affine subspace associated with the trajectory. This amounts to imposing a global constraint on the data. Secondly, we propose to further include local constraints derived from epipolar geometry into the estimation. It is shown how to simultaneously optimize both constraints. By using simulated and real image sequences we show the improvements achieved with our algorithm.","PeriodicalId":386532,"journal":{"name":"2009 IEEE Conference on Computer Vision and Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2009.5206664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The problem of reconstructing a 3D scene from a moving camera can be solved by means of the so-called Factorization method. It directly computes a global solution without the need to merge several partial reconstructions. However, if the trajectories are not complete, i.e. not every feature point could be observed in all the images, this method cannot be used. We use a Factorization-style algorithm for recovering the unobserved feature positions in a non-incremental way. This method uniformly utilizes all data and finds a global solution without any need of sequential or hierarchical merging. Two contributions are made in this work: Firstly, partially known trajectories are completed by minimizing the distance between the subspace and the trajectory within an affine subspace associated with the trajectory. This amounts to imposing a global constraint on the data. Secondly, we propose to further include local constraints derived from epipolar geometry into the estimation. It is shown how to simultaneously optimize both constraints. By using simulated and real image sequences we show the improvements achieved with our algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于全局和局部约束的仿射结构运动轨迹重建
通过所谓的分解方法,可以解决从移动摄像机中重建三维场景的问题。它直接计算一个全局解决方案,而不需要合并几个部分重建。但是,如果轨迹不完整,即不能在所有图像中观察到每个特征点,则不能使用该方法。我们使用分解式算法以非增量的方式恢复未观察到的特征位置。该方法统一利用所有数据,找到全局解,不需要顺序合并或分层合并。本研究有两个贡献:首先,通过最小化与轨迹相关的仿射子空间内的子空间与轨迹之间的距离来完成部分已知轨迹。这相当于对数据施加了一个全局约束。其次,我们建议在估计中进一步加入由极极几何导出的局部约束。给出了如何同时优化这两个约束。通过模拟和真实图像序列,我们展示了算法的改进效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On bias correction for geometric parameter estimation in computer vision Learning multi-modal densities on Discriminative Temporal Interaction Manifold for group activity recognition Nonrigid shape recovery by Gaussian process regression Combining powerful local and global statistics for texture description Observe locally, infer globally: A space-time MRF for detecting abnormal activities with incremental updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1