SpotOn: a batch computing service for the spot market

S. Subramanya, Tian Guo, Prateek Sharma, David E. Irwin, P. Shenoy
{"title":"SpotOn: a batch computing service for the spot market","authors":"S. Subramanya, Tian Guo, Prateek Sharma, David E. Irwin, P. Shenoy","doi":"10.1145/2806777.2806851","DOIUrl":null,"url":null,"abstract":"Cloud spot markets enable users to bid for compute resources, such that the cloud platform may revoke them if the market price rises too high. Due to their increased risk, revocable resources in the spot market are often significantly cheaper (by as much as 10×) than the equivalent non-revocable on-demand resources. One way to mitigate spot market risk is to use various fault-tolerance mechanisms, such as checkpointing or replication, to limit the work lost on revocation. However, the additional performance overhead and cost for a particular fault-tolerance mechanism is a complex function of both an application's resource usage and the magnitude and volatility of spot market prices. We present the design of a batch computing service for the spot market, called SpotOn, that automatically selects a spot market and fault-tolerance mechanism to mitigate the impact of spot revocations without requiring application modification. SpotOn's goal is to execute jobs with the performance of on-demand resources, but at a cost near that of the spot market. We implement and evaluate SpotOn in simulation and using a prototype on Amazon's EC2 that packages jobs in Linux Containers. Our simulation results using a job trace from a Google cluster indicate that SpotOn lowers costs by 91.9% compared to using on-demand resources with little impact on performance.","PeriodicalId":275158,"journal":{"name":"Proceedings of the Sixth ACM Symposium on Cloud Computing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth ACM Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2806777.2806851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111

Abstract

Cloud spot markets enable users to bid for compute resources, such that the cloud platform may revoke them if the market price rises too high. Due to their increased risk, revocable resources in the spot market are often significantly cheaper (by as much as 10×) than the equivalent non-revocable on-demand resources. One way to mitigate spot market risk is to use various fault-tolerance mechanisms, such as checkpointing or replication, to limit the work lost on revocation. However, the additional performance overhead and cost for a particular fault-tolerance mechanism is a complex function of both an application's resource usage and the magnitude and volatility of spot market prices. We present the design of a batch computing service for the spot market, called SpotOn, that automatically selects a spot market and fault-tolerance mechanism to mitigate the impact of spot revocations without requiring application modification. SpotOn's goal is to execute jobs with the performance of on-demand resources, but at a cost near that of the spot market. We implement and evaluate SpotOn in simulation and using a prototype on Amazon's EC2 that packages jobs in Linux Containers. Our simulation results using a job trace from a Google cluster indicate that SpotOn lowers costs by 91.9% compared to using on-demand resources with little impact on performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
spot:现货市场的批量计算服务
云现货市场允许用户竞标计算资源,如果市场价格上涨过高,云平台可能会撤销这些资源。由于风险增加,现货市场上的可撤销资源往往比同等的不可撤销按需资源便宜得多(低10倍)。减轻现货市场风险的一种方法是使用各种容错机制,例如检查点或复制,以限制撤销时损失的工作。然而,特定容错机制的额外性能开销和成本是应用程序资源使用和现货市场价格的大小和波动性的复杂函数。我们提出了一种用于现货市场的批量计算服务的设计,称为SpotOn,它可以自动选择现货市场和容错机制,以减轻现货撤销的影响,而无需修改应用程序。SpotOn的目标是按照按需资源的性能执行作业,但成本接近现货市场。我们在模拟中实现并评估了SpotOn,并在Amazon的EC2上使用了一个原型,该原型在Linux容器中封装了作业。我们使用来自Google集群的作业跟踪的模拟结果表明,与使用按需资源相比,SpotOn降低了91.9%的成本,对性能的影响很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Software-defined caching: managing caches in multi-tenant data centers Managed communication and consistency for fast data-parallel iterative analytics MemcachedGPU: scaling-up scale-out key-value stores Database high availability using SHADOW systems Proceedings of the Sixth ACM Symposium on Cloud Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1