Low-rank matrix approximations over canonical subspaces

A. Dax
{"title":"Low-rank matrix approximations over canonical subspaces","authors":"A. Dax","doi":"10.33993/jnaat491-1195","DOIUrl":null,"url":null,"abstract":"In this paper we derive closed form expressions for the nearest rank-\\(k\\) matrix on canonical subspaces.  \n  \nWe start by studying three kinds of subspaces.  Let \\(X\\) and \\(Y\\) be a pair of given matrices. The first subspace contains all the \\(m\\times n\\) matrices \\(A\\) that satisfy \\(AX=O\\). The second subspace contains all the \\(m \\times n\\) matrices \\(A\\) that satisfy \\(Y^TA = O\\),  while the matrices in the third subspace satisfy both \\(AX =O\\) and \\(Y^TA = 0\\). \n  \nThe second part of the paper considers a subspace that contains all the symmetric matrices \\(S\\) that satisfy \\(SX =O\\).  In this case, in addition to the nearest rank-\\(k\\) matrix we also provide the nearest rank-\\(k\\) positive  approximant on that subspace. \n  \nA further insight is gained by showing that the related cones of positive semidefinite matrices, and  negative semidefinite matrices, constitute a polar decomposition of this subspace. \nThe paper ends with two examples of applications.  The first one regards the problem of computing the nearest rank-\\(k\\) centered matrix, and adds new insight into the PCA of a matrix. \nThe second application comes from the field of Euclidean distance matrices.  The new results on low-rank positive approximants are used to derive an explicit expression for the nearest source matrix.  This opens a direct way for computing the related positions matrix.","PeriodicalId":287022,"journal":{"name":"Journal of Numerical Analysis and Approximation Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Analysis and Approximation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33993/jnaat491-1195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we derive closed form expressions for the nearest rank-\(k\) matrix on canonical subspaces.    We start by studying three kinds of subspaces.  Let \(X\) and \(Y\) be a pair of given matrices. The first subspace contains all the \(m\times n\) matrices \(A\) that satisfy \(AX=O\). The second subspace contains all the \(m \times n\) matrices \(A\) that satisfy \(Y^TA = O\),  while the matrices in the third subspace satisfy both \(AX =O\) and \(Y^TA = 0\).   The second part of the paper considers a subspace that contains all the symmetric matrices \(S\) that satisfy \(SX =O\).  In this case, in addition to the nearest rank-\(k\) matrix we also provide the nearest rank-\(k\) positive  approximant on that subspace.   A further insight is gained by showing that the related cones of positive semidefinite matrices, and  negative semidefinite matrices, constitute a polar decomposition of this subspace. The paper ends with two examples of applications.  The first one regards the problem of computing the nearest rank-\(k\) centered matrix, and adds new insight into the PCA of a matrix. The second application comes from the field of Euclidean distance matrices.  The new results on low-rank positive approximants are used to derive an explicit expression for the nearest source matrix.  This opens a direct way for computing the related positions matrix.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
正则子空间上的低秩矩阵逼近
本文导出了正则子空间上最近邻秩- \(k\)矩阵的闭表达式。我们从研究三种子空间开始。设\(X\)和\(Y\)是一对给定的矩阵。第一个子空间包含所有满足\(AX=O\)的\(m\times n\)矩阵\(A\)。第二个子空间包含所有满足\(Y^TA = O\)的\(m \times n\)矩阵\(A\),而第三个子空间中的矩阵同时满足\(AX =O\)和\(Y^TA = 0\)。本文的第二部分考虑一个包含所有满足\(SX =O\)的对称矩阵\(S\)的子空间。在这种情况下,除了最近的秩- \(k\)矩阵外,我们还在该子空间上提供了最近的秩- \(k\)正逼近。通过表明正半定矩阵和负半定矩阵的相关锥构成该子空间的极分解,获得了进一步的见解。本文最后给出了两个应用实例。第一部分考虑了计算最近秩- \(k\)中心矩阵的问题,并对矩阵的主成分分析增加了新的见解。第二个应用来自欧几里得距离矩阵领域。利用低秩正逼近的新结果,导出了最近源矩阵的显式表达式。这为计算相关位置矩阵开辟了一种直接的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptation of the composite finite element framework for semilinear parabolic problems A comparative study of Filon-type rules for oscillatory integrals Local convergence analysis of frozen Steffensen-type methods under generalized conditions Extension of primal-dual interior point method based on a kernel function for linear fractional problem Nonlinear random extrapolation estimates of \(\pi\) under Dirichlet distributions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1