Human State Classification and Predication for Critical Care Monitoring by Real-Time Bio-signal Analysis

Xiaokun Li, F. Porikli
{"title":"Human State Classification and Predication for Critical Care Monitoring by Real-Time Bio-signal Analysis","authors":"Xiaokun Li, F. Porikli","doi":"10.1109/ICPR.2010.602","DOIUrl":null,"url":null,"abstract":"To address the challenges in critical care monitoring, we present a multi-modality bio-signal modeling and analysis modeling framework for real-time human state classification and predication. The novel bioinformatic framework is developed to solve the human state classification and predication issues from two aspects: a) achieve 1:1 mapping between the bio-signal and the human state via discriminant feature analysis and selection by using probabilistic principle component analysis (PPCA); b) avoid time-consuming data analysis and extensive integration resources by using Dynamic Bayesian Network (DBN). In addition, intelligent and automatic selection of the most suitable sensors from the bio-sensor array is also integrated in the proposed DBN.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

To address the challenges in critical care monitoring, we present a multi-modality bio-signal modeling and analysis modeling framework for real-time human state classification and predication. The novel bioinformatic framework is developed to solve the human state classification and predication issues from two aspects: a) achieve 1:1 mapping between the bio-signal and the human state via discriminant feature analysis and selection by using probabilistic principle component analysis (PPCA); b) avoid time-consuming data analysis and extensive integration resources by using Dynamic Bayesian Network (DBN). In addition, intelligent and automatic selection of the most suitable sensors from the bio-sensor array is also integrated in the proposed DBN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于实时生物信号分析的重症监护监护患者状态分类与预测
为了解决重症监护监测中的挑战,我们提出了一种多模态生物信号建模和分析建模框架,用于实时人类状态分类和预测。提出了一种新的生物信息学框架,从两个方面解决了人体状态的分类和预测问题:a)利用概率主成分分析(PPCA)进行判别特征分析和选择,实现生物信号与人体状态的1:1映射;b)使用动态贝叶斯网络(Dynamic Bayesian Network, DBN)避免耗时的数据分析和大量的集成资源。此外,DBN还集成了从生物传感器阵列中智能自动选择最合适的传感器的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comprehensive Evaluation on Non-deterministic Motion Estimation Coarse Scale Feature Extraction Using the Spiral Architecture Structure Research the Performance of a Recursive Algorithm of the Local Discrete Wavelet Transform Underwater Mine Classification with Imperfect Labels Scribe Identification in Medieval English Manuscripts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1