On Interpretability of CNNs for Multimodal Medical Image Segmentation

Srdan Lazendic, Jens Janssens, Shaoguang Huang, A. Pižurica
{"title":"On Interpretability of CNNs for Multimodal Medical Image Segmentation","authors":"Srdan Lazendic, Jens Janssens, Shaoguang Huang, A. Pižurica","doi":"10.23919/eusipco55093.2022.9909776","DOIUrl":null,"url":null,"abstract":"Despite their huge potential, deep learning-based models are still not trustful enough to warrant their adoption in clinical practice. The research on the interpretability and explainability of deep learning is currently attracting huge attention. Multilayer Convolutional Sparse Coding (ML-CSC) data model, provides a model-based explanation of convolutional neural networks (CNNs). In this article, we extend the ML-CSC framework towards multimodal data for medical image segmentation, and propose a merged joint feature extraction ML-CSC model. This work generalizes and improves upon our previous model, by deriving a more elegant approach that merges feature extraction and convolutional sparse coding in a unified framework. A segmentation study on a multimodal magnetic resonance imaging (MRI) dataset confirms the effectiveness of the proposed approach. We also supply an interpretability study regarding the involved model parameters.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Despite their huge potential, deep learning-based models are still not trustful enough to warrant their adoption in clinical practice. The research on the interpretability and explainability of deep learning is currently attracting huge attention. Multilayer Convolutional Sparse Coding (ML-CSC) data model, provides a model-based explanation of convolutional neural networks (CNNs). In this article, we extend the ML-CSC framework towards multimodal data for medical image segmentation, and propose a merged joint feature extraction ML-CSC model. This work generalizes and improves upon our previous model, by deriving a more elegant approach that merges feature extraction and convolutional sparse coding in a unified framework. A segmentation study on a multimodal magnetic resonance imaging (MRI) dataset confirms the effectiveness of the proposed approach. We also supply an interpretability study regarding the involved model parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多模态医学图像分割的cnn可解释性研究
尽管有巨大的潜力,但基于深度学习的模型仍然不够可信,不足以保证在临床实践中采用。关于深度学习的可解释性和可解释性的研究目前备受关注。多层卷积稀疏编码(ML-CSC)数据模型为卷积神经网络(cnn)提供了一种基于模型的解释。在本文中,我们将ML-CSC框架扩展到医学图像分割的多模态数据,并提出了一个合并的联合特征提取ML-CSC模型。这项工作在我们之前的模型上进行了推广和改进,通过推导出一种更优雅的方法,将特征提取和卷积稀疏编码合并在一个统一的框架中。对多模态磁共振成像(MRI)数据集的分割研究证实了所提出方法的有效性。我们还提供了关于所涉及的模型参数的可解释性研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Bias in Face Image Quality Assessment Electrically evoked auditory steady state response detection in cochlear implant recipients using a system identification approach Uncovering cortical layers with multi-exponential analysis: a region of interest study Phaseless Passive Synthetic Aperture Imaging with Regularized Wirtinger Flow The faster proximal algorithm, the better unfolded deep learning architecture ? The study case of image denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1