Spectrogram Image-based Machine Learning Model for Carotid-to-Femoral Pulse Wave Velocity Estimation Using PPG Signal

Juan Manuel Vargas Garcia, M. Bahloul, T. Laleg‐Kirati
{"title":"Spectrogram Image-based Machine Learning Model for Carotid-to-Femoral Pulse Wave Velocity Estimation Using PPG Signal","authors":"Juan Manuel Vargas Garcia, M. Bahloul, T. Laleg‐Kirati","doi":"10.1109/BHI56158.2022.9926941","DOIUrl":null,"url":null,"abstract":"Carotid-to-femoral pulse wave velocity (cf-PWV) is a critical biomarker for evaluating arterial stiffness and cardiovascular risk. Monitoring cf-PWV is essential for cardiovascular disease diagnosis and prediction. However, the complexity during the measurement process of cf-PWV makes it prone to present errors and inaccuracies. For this reason, a learning-based non-invasive measurement of cf-PWV using peripheral signals could overcome some of the difficulties presented in the classical measurement process and improve the quality of the estimation. In this paper, a spectrogram-based machine learning model obtained from the photoplethysmogram (PPG) waveform is proposed for the estimation of the cf-PWV. For this purpose, two machine learning models have been developed using three different types of features. The first category is based on an adaptive signal processing method called Semi-Classical Signal Analysis (SCSA) that relies on the spectral problem of the Schrodinger operator; the second type proposed is energy texture-based, and the third is the statistical texture representation. Finally, the training and testing datasets were extracted from in-silico, publicly available pulse waves and hemodynamics data. The obtained results provide evidence for the feasibility and robustness of the spectrogram to transform the signals into an image and machine learning method as a tool for estimating the cf-PWV.","PeriodicalId":347210,"journal":{"name":"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","volume":"PP 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BHI56158.2022.9926941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Carotid-to-femoral pulse wave velocity (cf-PWV) is a critical biomarker for evaluating arterial stiffness and cardiovascular risk. Monitoring cf-PWV is essential for cardiovascular disease diagnosis and prediction. However, the complexity during the measurement process of cf-PWV makes it prone to present errors and inaccuracies. For this reason, a learning-based non-invasive measurement of cf-PWV using peripheral signals could overcome some of the difficulties presented in the classical measurement process and improve the quality of the estimation. In this paper, a spectrogram-based machine learning model obtained from the photoplethysmogram (PPG) waveform is proposed for the estimation of the cf-PWV. For this purpose, two machine learning models have been developed using three different types of features. The first category is based on an adaptive signal processing method called Semi-Classical Signal Analysis (SCSA) that relies on the spectral problem of the Schrodinger operator; the second type proposed is energy texture-based, and the third is the statistical texture representation. Finally, the training and testing datasets were extracted from in-silico, publicly available pulse waves and hemodynamics data. The obtained results provide evidence for the feasibility and robustness of the spectrogram to transform the signals into an image and machine learning method as a tool for estimating the cf-PWV.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于频谱图图像的PPG信号颈-股脉波速度估计机器学习模型
颈动脉至股动脉脉波速度(cf-PWV)是评估动脉僵硬度和心血管风险的重要生物标志物。监测cf-PWV对心血管疾病的诊断和预测至关重要。然而,cf-PWV测量过程的复杂性使其容易出现误差和不准确性。因此,利用外围信号进行基于学习的cf-PWV无创测量可以克服经典测量过程中存在的一些困难,提高估计质量。本文提出了一种基于谱图的机器学习模型,该模型由光容积脉搏波(PPG)波形获得,用于估计cf-PWV。为此,使用三种不同类型的特征开发了两个机器学习模型。第一类是基于一种自适应信号处理方法,称为半经典信号分析(SCSA),它依赖于薛定谔算子的频谱问题;第二种是基于能量纹理的纹理表示,第三种是统计纹理表示。最后,训练和测试数据集从计算机中提取,公开可用的脉搏波和血流动力学数据。所得结果证明了谱图将信号转化为图像的可行性和鲁棒性,以及机器学习方法作为估计cf-PWV的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BEBOP: Bidirectional dEep Brain cOnnectivity maPping Stabilizing Skeletal Pose Estimation using mmWave Radar via Dynamic Model and Filtering Behavioral Data Categorization for Transformers-based Models in Digital Health Gender Difference in Prognosis of Patients with Heart Failure: A Propensity Score Matching Analysis Influence of Sensor Position and Body Movements on Radar-Based Heart Rate Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1