Robust and Task-Aware Training of Deep Residual Networks for Varying-Lead ECG Classification

Hansheng Ren, Miao Xiong, Bryan Hooi
{"title":"Robust and Task-Aware Training of Deep Residual Networks for Varying-Lead ECG Classification","authors":"Hansheng Ren, Miao Xiong, Bryan Hooi","doi":"10.23919/cinc53138.2021.9662739","DOIUrl":null,"url":null,"abstract":"In PhysioNet/Computing in Cardiology Challenge 2021, we developed an ensemble model by combining different epochs of ResNet to classify cardiac abnormalities from 12,6,4,3,2 lead electrocardiogram (ECG) signals, where epochs are chosen based on validation performance on China Physiological Signal Challenge (CPSC) dataset and Georgia dataset. In order to adapt to the specially designed Challenge score, we designed a multi-task loss to combine the benefit of binary cross-entropy loss and Challenge loss. Besides, we also integrated a subsample frequency feature into the model to learn from the signals. To gain a better generalization ability, mixup and weighted loss are introduced. We submitted our model in the official phase with team name DataLA_NUS, and our final selected model achieved a Challenge score of 0.51, 0.51, 0.51, 0.50, 0.52 (ranked 8th, 5th, 6th, 8th, 5th) on the 12-lead, 6-lead, 4-lead, 3-lead, and 2-lead setting on the final hidden test set with the Challenge evaluation metric.","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In PhysioNet/Computing in Cardiology Challenge 2021, we developed an ensemble model by combining different epochs of ResNet to classify cardiac abnormalities from 12,6,4,3,2 lead electrocardiogram (ECG) signals, where epochs are chosen based on validation performance on China Physiological Signal Challenge (CPSC) dataset and Georgia dataset. In order to adapt to the specially designed Challenge score, we designed a multi-task loss to combine the benefit of binary cross-entropy loss and Challenge loss. Besides, we also integrated a subsample frequency feature into the model to learn from the signals. To gain a better generalization ability, mixup and weighted loss are introduced. We submitted our model in the official phase with team name DataLA_NUS, and our final selected model achieved a Challenge score of 0.51, 0.51, 0.51, 0.50, 0.52 (ranked 8th, 5th, 6th, 8th, 5th) on the 12-lead, 6-lead, 4-lead, 3-lead, and 2-lead setting on the final hidden test set with the Challenge evaluation metric.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于变导联心电分类的深度残差网络鲁棒和任务感知训练
在PhysioNet/Computing In Cardiology Challenge 2021中,我们通过结合ResNet的不同时间点开发了一个集成模型,对12、6、4、3、2导联心电图(ECG)信号进行心脏异常分类,其中时间点的选择是基于中国生理信号挑战(CPSC)数据集和Georgia数据集的验证性能。为了适应专门设计的挑战分数,我们设计了一种多任务损失,将二值交叉熵损失和挑战损失的优点结合起来。此外,我们还将子样本频率特征集成到模型中以从信号中学习。为了获得更好的泛化能力,引入了混合和加权损失。我们在正式阶段以团队名称DataLA_NUS提交了我们的模型,最终选择的模型在最终隐藏测试集的12领先、6领先、4领先、3领先和2领先设置下获得了0.51、0.51、0.51、0.51、0.50、0.52(排名第8、5、6、8、5)的Challenge分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of Hydroxychloroquine Dosage on the Occurrence of Arrhythmia in COVID-19 Infected Ventricle Guinea Pig ECG Changes under the Effect of New Drug Candidate TP28b Electrocardiographic Imaging of Sinus Rhythm in Pig Hearts Using Bayesian Maximum A Posteriori Estimation Sensitivity Analysis and Parameter Identification of a Cardiovascular Model in Aortic Stenosis Semi-Supervised vs. Supervised Learning for Discriminating Atrial Flutter Mechanisms Using the 12-lead ECG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1