J. Magnusson, J. Martinez-Velasco, A. Bissal, G. Engdahl, L. Liljestrand
{"title":"Optimal design of a medium voltage hybrid fault current limiter","authors":"J. Magnusson, J. Martinez-Velasco, A. Bissal, G. Engdahl, L. Liljestrand","doi":"10.1109/ENERGYCON.2014.6850463","DOIUrl":null,"url":null,"abstract":"The connection of distributed generation increases the short circuit power which in turn might exceed the ratings of the installed circuit breakers. A solution is to limit the available short circuit power by increasing the grid impedance, but since there is a constant strive for lower losses and higher power transfer capabilities, this is not desired. The application of a fault current limiter (FCL) that can limit the current before the first peak enables a power system with high short circuit power and low short circuit current. This can increase the stability of the grid and reduce the requirements of other equipment. This work presents a simulation model to be used as an aid in the design of a hybrid FCL for a 12 kV AC system. The proposed model combines a transient analysis circuit model with an optimization module to obtain multiple sets of possible design parameters. The design is not straight forward since there is a trade-off between several of the design parameters.","PeriodicalId":410611,"journal":{"name":"2014 IEEE International Energy Conference (ENERGYCON)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Energy Conference (ENERGYCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENERGYCON.2014.6850463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The connection of distributed generation increases the short circuit power which in turn might exceed the ratings of the installed circuit breakers. A solution is to limit the available short circuit power by increasing the grid impedance, but since there is a constant strive for lower losses and higher power transfer capabilities, this is not desired. The application of a fault current limiter (FCL) that can limit the current before the first peak enables a power system with high short circuit power and low short circuit current. This can increase the stability of the grid and reduce the requirements of other equipment. This work presents a simulation model to be used as an aid in the design of a hybrid FCL for a 12 kV AC system. The proposed model combines a transient analysis circuit model with an optimization module to obtain multiple sets of possible design parameters. The design is not straight forward since there is a trade-off between several of the design parameters.