On the evolution of artificial Tetris players

Amine M. Boumaza
{"title":"On the evolution of artificial Tetris players","authors":"Amine M. Boumaza","doi":"10.1109/CIG.2009.5286451","DOIUrl":null,"url":null,"abstract":"In the paper, we focus the use of evolutionary algorithms to learn strategies to play the game of Tetris. We describe the problem and discuss the nature of the search space. We present experiments to illustrate the learning process of our artificial player, and provide a new procedure to speed up the learning time. The results we present compare with the best known artificial player, and show how our evolutionary algorithm is able to rediscover player strategies previously published. Finally we provide some ideas to improve the performance of artificial Tetris players.","PeriodicalId":358795,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence and Games","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2009.5286451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

In the paper, we focus the use of evolutionary algorithms to learn strategies to play the game of Tetris. We describe the problem and discuss the nature of the search space. We present experiments to illustrate the learning process of our artificial player, and provide a new procedure to speed up the learning time. The results we present compare with the best known artificial player, and show how our evolutionary algorithm is able to rediscover player strategies previously published. Finally we provide some ideas to improve the performance of artificial Tetris players.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于人工俄罗斯方块玩家的进化
在本文中,我们着重于使用进化算法来学习玩俄罗斯方块游戏的策略。我们描述了问题并讨论了搜索空间的性质。我们通过实验说明了人工棋手的学习过程,并提供了一种加快学习时间的新方法。我们所呈现的结果与最著名的人工玩家进行了比较,并展示了我们的进化算法如何能够重新发现之前发布的玩家策略。最后,我们提出了一些改进人工俄罗斯方块玩家性能的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal strategy selection of non-player character on real time strategy game using a speciated evolutionary algorithm Formal analysis and algorithms for extracting coordinate systems of games Evolving driving controllers using Genetic Programming CHANCEPROBCUT: Forward pruning in chance nodes Evolving coordinated spatial tactics for autonomous entities using influence maps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1