{"title":"Error Correction in Fast Matrix Multiplication and Inverse","authors":"Daniel S. Roche","doi":"10.1145/3208976.3209001","DOIUrl":null,"url":null,"abstract":"We present new algorithms to detect and correct errors in the product of two matrices, or the inverse of a matrix, over an arbitrary field. Our algorithms do not require any additional information or encoding other than the original inputs and the erroneous output. Their running time is softly linear in the number of nonzero entries in these matrices when the number of errors is sufficiently small, and they also incorporate fast matrix multiplication so that the cost scales well when the number of errors is large. These algorithms build on the recent result of Gasieniec et al (2017) on correcting matrix products, as well as existing work on verification algorithms, sparse low-rank linear algebra, and sparse polynomial interpolation.","PeriodicalId":105762,"journal":{"name":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208976.3209001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We present new algorithms to detect and correct errors in the product of two matrices, or the inverse of a matrix, over an arbitrary field. Our algorithms do not require any additional information or encoding other than the original inputs and the erroneous output. Their running time is softly linear in the number of nonzero entries in these matrices when the number of errors is sufficiently small, and they also incorporate fast matrix multiplication so that the cost scales well when the number of errors is large. These algorithms build on the recent result of Gasieniec et al (2017) on correcting matrix products, as well as existing work on verification algorithms, sparse low-rank linear algebra, and sparse polynomial interpolation.