DEN: Disentanglement and Enhancement Networks for Low Illumination Images

Nelson Chong Ngee Bow, Vu-Hoang Tran, Punchok Kerdsiri, Y. P. Loh, Ching-Chun Huang
{"title":"DEN: Disentanglement and Enhancement Networks for Low Illumination Images","authors":"Nelson Chong Ngee Bow, Vu-Hoang Tran, Punchok Kerdsiri, Y. P. Loh, Ching-Chun Huang","doi":"10.1109/VCIP49819.2020.9301830","DOIUrl":null,"url":null,"abstract":"Though learning-based low-light enhancement methods have achieved significant success, existing methods are still sensitive to noise and unnatural appearance. The problems may come from the lack of structural awareness and the confusion between noise and texture. Thus, we present a lowlight image enhancement method that consists of an image disentanglement network and an illumination boosting network. The disentanglement network is first used to decompose the input image into image details and image illumination. The extracted illumination part then goes through a multi-branch enhancement network designed to improve the dynamic range of the image. The multi-branch network extracts multi-level image features and enhances them via numerous subnets. These enhanced features are then fused to generate the enhanced illumination part. Finally, the denoised image details and the enhanced illumination are entangled to produce the normallight image. Experimental results show that our method can produce visually pleasing images in many public datasets.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Though learning-based low-light enhancement methods have achieved significant success, existing methods are still sensitive to noise and unnatural appearance. The problems may come from the lack of structural awareness and the confusion between noise and texture. Thus, we present a lowlight image enhancement method that consists of an image disentanglement network and an illumination boosting network. The disentanglement network is first used to decompose the input image into image details and image illumination. The extracted illumination part then goes through a multi-branch enhancement network designed to improve the dynamic range of the image. The multi-branch network extracts multi-level image features and enhances them via numerous subnets. These enhanced features are then fused to generate the enhanced illumination part. Finally, the denoised image details and the enhanced illumination are entangled to produce the normallight image. Experimental results show that our method can produce visually pleasing images in many public datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DEN:低照度图像的解纠缠和增强网络
尽管基于学习的弱光增强方法已经取得了显著的成功,但现有的方法仍然对噪声和非自然外观敏感。问题可能来自结构意识的缺乏以及噪声和纹理的混淆。因此,我们提出了一种低光图像增强方法,该方法由图像解纠缠网络和光照增强网络组成。首先利用解纠缠网络将输入图像分解为图像细节和图像照明。然后将提取的照明部分经过多分支增强网络,以提高图像的动态范围。多分支网络提取多层次的图像特征,并通过多个子网对其进行增强。然后将这些增强的特征融合以生成增强的照明部分。最后,将去噪后的图像细节与增强后的光照进行纠缠,得到正常光照图像。实验结果表明,该方法可以在许多公共数据集上生成视觉上令人满意的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Mixed Appearance-based and Coding Distortion-based CNN Fusion Approach for In-loop Filtering in Video Coding APL: Adaptive Preloading of Short Video with Lyapunov Optimization A Novel Visual Analysis Oriented Rate Control Scheme for HEVC A Theory of Occlusion for Improving Rendering Quality of Views A Progressive Fast CU Split Decision Scheme for AVS3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1