An integrated approach for the identification of compact, interpretable and accurate fuzzy rule-based classifiers from data

A. Riid, E. Rustern
{"title":"An integrated approach for the identification of compact, interpretable and accurate fuzzy rule-based classifiers from data","authors":"A. Riid, E. Rustern","doi":"10.1109/INES.2011.5954728","DOIUrl":null,"url":null,"abstract":"This paper presents three very simple and computationally undemanding symbiotic algorithms for the identification of compact fuzzy rule-based classifiers from data. The problem of interpretability is specifically addressed, resulting in a conclusion that due to the characteristics of classification tasks a major well-known interpretability condition — distinguishability — can be discarded. It is shown that despite the interpretability-accuracy tradeoff, accuracy of identified classifiers stands out to comparison. All obtained properties can be very useful in practical problems. The proposed method is validated on Iris, Wine and Wisconsin Breast Cancer data sets.","PeriodicalId":414812,"journal":{"name":"2011 15th IEEE International Conference on Intelligent Engineering Systems","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 15th IEEE International Conference on Intelligent Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INES.2011.5954728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper presents three very simple and computationally undemanding symbiotic algorithms for the identification of compact fuzzy rule-based classifiers from data. The problem of interpretability is specifically addressed, resulting in a conclusion that due to the characteristics of classification tasks a major well-known interpretability condition — distinguishability — can be discarded. It is shown that despite the interpretability-accuracy tradeoff, accuracy of identified classifiers stands out to comparison. All obtained properties can be very useful in practical problems. The proposed method is validated on Iris, Wine and Wisconsin Breast Cancer data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从数据中识别紧凑、可解释和准确的模糊规则分类器的集成方法
本文提出了三种非常简单且计算量不高的共生算法,用于从数据中识别紧凑模糊规则分类器。具体讨论了可解释性问题,得出结论,由于分类任务的特点,一个主要的众所周知的可解释性条件-可分辨性-可以被丢弃。结果表明,尽管可解释性与准确性之间存在权衡,但识别出的分类器的准确性在比较中脱颖而出。所有得到的性质在实际问题中都非常有用。该方法在Iris、Wine和Wisconsin乳腺癌数据集上进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Algorithms for pitch distance determination Ontology-coupled active contours for dynamic video scene understanding Linear octapolar radiofrequency tool for liver ablation Integrated approach to course and engineering model for automation related topics 3DOF drawing robot using LEGO-NXT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1