{"title":"Predicting credit card delinquencies: An application of deep neural networks","authors":"Ting Sun, Miklos A. Vasarhelyi","doi":"10.1002/isaf.1437","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The objective of this paper is twofold. First, it develops a prediction system to help the credit card issuer model the credit card delinquency risk. Second, it seeks to explore the potential of deep learning (also called a deep neural network), an emerging artificial intelligence technology, in the credit risk domain. With real-life credit card data linked to 711,397 credit card holders from a large bank in Brazil, this study develops a deep neural network to evaluate the risk of credit card delinquency based on the client's personal characteristics and the spending behaviours. Compared with machine-learning algorithms of logistic regression, naive Bayes, traditional artificial neural networks, and decision trees, deep neural networks have a better overall predictive performance with the highest <i>F</i> scores and area under the receiver operating characteristic curve. The successful application of deep learning implies that artificial intelligence has great potential to support and automate credit risk assessment for financial institutions and credit bureaus.</p>\n </div>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"25 4","pages":"174-189"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/isaf.1437","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 42
Abstract
The objective of this paper is twofold. First, it develops a prediction system to help the credit card issuer model the credit card delinquency risk. Second, it seeks to explore the potential of deep learning (also called a deep neural network), an emerging artificial intelligence technology, in the credit risk domain. With real-life credit card data linked to 711,397 credit card holders from a large bank in Brazil, this study develops a deep neural network to evaluate the risk of credit card delinquency based on the client's personal characteristics and the spending behaviours. Compared with machine-learning algorithms of logistic regression, naive Bayes, traditional artificial neural networks, and decision trees, deep neural networks have a better overall predictive performance with the highest F scores and area under the receiver operating characteristic curve. The successful application of deep learning implies that artificial intelligence has great potential to support and automate credit risk assessment for financial institutions and credit bureaus.
期刊介绍:
Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.