A Machine-Learning-based Approach for Parameter Control in Bee Colony Optimization for Traveling Salesman Problem

Chong Gee Tan, Shin Siang Choong, L. Wong
{"title":"A Machine-Learning-based Approach for Parameter Control in Bee Colony Optimization for Traveling Salesman Problem","authors":"Chong Gee Tan, Shin Siang Choong, L. Wong","doi":"10.1109/taai54685.2021.00019","DOIUrl":null,"url":null,"abstract":"Metaheuristics are a set of algorithms which is capable of solving Combinatorial Optimization Problems (COPs). When a metaheuristic is used to solve a COP, one of the major aspects is to determine an appropriate parameter setting. Poor practice of determining parameter values may lead to inability to find optimal solutions or getting invalid conclusions from the experimental results. This research proposes a machine-learning-based parameter control mechanism for a metaheuristic, i.e. the Bee Colony Optimization (BCO) algorithm. The proposed mechanism consists of three main phases: Data Collection, Model Training, and Deployment. In order to examine the performance of the BCO algorithm with the parameter control mechanism, a set of 16 TSP instances is used as test bed. The experimental results show that it is significantly better than the BCO implementation using the parameter values that are determined via a manual tuning process. The proposed parameter control mechanism overcomes the shortcomings of manual parameter tuning and dynamically adjust the parameter values throughout the BCO optimization process.","PeriodicalId":343821,"journal":{"name":"2021 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/taai54685.2021.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Metaheuristics are a set of algorithms which is capable of solving Combinatorial Optimization Problems (COPs). When a metaheuristic is used to solve a COP, one of the major aspects is to determine an appropriate parameter setting. Poor practice of determining parameter values may lead to inability to find optimal solutions or getting invalid conclusions from the experimental results. This research proposes a machine-learning-based parameter control mechanism for a metaheuristic, i.e. the Bee Colony Optimization (BCO) algorithm. The proposed mechanism consists of three main phases: Data Collection, Model Training, and Deployment. In order to examine the performance of the BCO algorithm with the parameter control mechanism, a set of 16 TSP instances is used as test bed. The experimental results show that it is significantly better than the BCO implementation using the parameter values that are determined via a manual tuning process. The proposed parameter control mechanism overcomes the shortcomings of manual parameter tuning and dynamically adjust the parameter values throughout the BCO optimization process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的旅行商问题蜂群优化参数控制方法
元启发式算法是一组能够解决组合优化问题的算法。当使用元启发式方法求解COP时,其中一个主要方面是确定适当的参数设置。确定参数值的做法不好可能导致无法找到最优解或从实验结果中得到无效的结论。本研究提出了一种基于机器学习的元启发式参数控制机制,即蜂群优化(BCO)算法。提出的机制包括三个主要阶段:数据收集、模型训练和部署。为了检验参数控制机制下BCO算法的性能,以16个TSP实例为实验平台。实验结果表明,该方法明显优于通过手动调优过程确定参数值的BCO实现。所提出的参数控制机制克服了手动参数整定的缺点,在整个BCO优化过程中动态调整参数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Random Forests and Decision Trees to Predict Viewing Game Live Streaming via Viewers’ Comments [Title page iii] An Automatic Response System based on Multi-layer Perceptual Neural Network and Web Crawler MLNN: A Novel Network Intrusion Detection Based on Multilayer Neural Network A Hybrid Deep Learning Network for Long-Term Travel Time Prediction in Freeways
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1