A hierarchical particle swarm optimizer

Stefan Janson, M. Middendorf
{"title":"A hierarchical particle swarm optimizer","authors":"Stefan Janson, M. Middendorf","doi":"10.1109/CEC.2003.1299745","DOIUrl":null,"url":null,"abstract":"A hierarchical version of the particle swarm optimization method called H-PSO is introduced. In H-PSO the particles are arranged in a dynamic hierarchy that is used to define a neighborhood structure. Depending on the quality of their so far best found solution the particles move up or down the hierarchy so that good particles have a higher influence on the swarm. Moreover, the hierarchy is used to define different search properties for the particles. Several variants of H-PSO are compared experimentally with variants of the standard PSO.","PeriodicalId":416243,"journal":{"name":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2003.1299745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

Abstract

A hierarchical version of the particle swarm optimization method called H-PSO is introduced. In H-PSO the particles are arranged in a dynamic hierarchy that is used to define a neighborhood structure. Depending on the quality of their so far best found solution the particles move up or down the hierarchy so that good particles have a higher influence on the swarm. Moreover, the hierarchy is used to define different search properties for the particles. Several variants of H-PSO are compared experimentally with variants of the standard PSO.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分层粒子群优化器
介绍了粒子群优化方法的分层版本H-PSO。在H-PSO中,粒子以动态层次排列,用于定义邻域结构。根据它们迄今为止找到的最佳解决方案的质量,粒子会向上或向下移动,这样好的粒子对群体的影响就会更大。此外,层次结构用于定义粒子的不同搜索属性。在实验中比较了H-PSO的几种变体与标准PSO的变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Searching oligo sets of human chromosome 12 using evolutionary strategies A nonlinear control system design based on HJB/HJI/FBI equations via differential genetic programming approach Particle swarm optimizers for Pareto optimization with enhanced archiving techniques Epigenetic programming: an approach of embedding epigenetic learning via modification of histones in genetic programming A new particle swarm optimiser for linearly constrained optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1