Changing Input Shape Dimension Using VGG16 Network Model

Elbren Antonio, Cyrus Rael, Elmer Buenavides
{"title":"Changing Input Shape Dimension Using VGG16 Network Model","authors":"Elbren Antonio, Cyrus Rael, Elmer Buenavides","doi":"10.1109/I2CACIS52118.2021.9495858","DOIUrl":null,"url":null,"abstract":"In computer vision, transfer learning is a common method because it helps us to quickly create accurate models. In this work, consider the outcome of the convolutional network depth with VGG16 on its accuracy in the large-scale image recognition setting. Rather than using a Convolutional Neural Network, Transfer Learning can be used on images with different image dimension inputs (CNN) and was originally trained on by using Keras to fine-tune the input from tensor dimensions. In this paper, we demonstrate how the VGG16 network handles new image input dimensions of 128x128x3 pixels from eligible VGG16 224x224x3 pixels images that are cut before the recognition is implemented. Our results show that Convolutional Neural Network can manage small datasets and can produce ideal validation accuracy of 93% from small images and better results from higher resolution images.","PeriodicalId":210770,"journal":{"name":"2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CACIS52118.2021.9495858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In computer vision, transfer learning is a common method because it helps us to quickly create accurate models. In this work, consider the outcome of the convolutional network depth with VGG16 on its accuracy in the large-scale image recognition setting. Rather than using a Convolutional Neural Network, Transfer Learning can be used on images with different image dimension inputs (CNN) and was originally trained on by using Keras to fine-tune the input from tensor dimensions. In this paper, we demonstrate how the VGG16 network handles new image input dimensions of 128x128x3 pixels from eligible VGG16 224x224x3 pixels images that are cut before the recognition is implemented. Our results show that Convolutional Neural Network can manage small datasets and can produce ideal validation accuracy of 93% from small images and better results from higher resolution images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用VGG16网络模型改变输入形状尺寸
在计算机视觉中,迁移学习是一种常见的方法,因为它可以帮助我们快速创建准确的模型。在这项工作中,考虑卷积网络深度与VGG16在大规模图像识别设置中的准确性的结果。迁移学习可以用于具有不同图像维度输入(CNN)的图像,而不是使用卷积神经网络,并且最初是通过使用Keras对张量维度的输入进行微调来训练的。在本文中,我们演示了VGG16网络如何处理在实现识别之前被切割的符合条件的VGG16 224x224x3像素图像的128x128x3像素的新图像输入尺寸。我们的研究结果表明,卷积神经网络可以管理小数据集,并且可以在小图像上产生理想的93%的验证精度,在高分辨率图像上产生更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-Linear Analytical Mathematical Modelling of a Hybrid Fixed-Wing Unmanned Aerial Vehicle in Pusher Configuration Efficacy of Heterogeneous Ensemble Assisted Machine Learning Model for Binary and Multi-Class Network Intrusion Detection Arrhythmia Detection using Electrocardiogram and Phonocardiogram Pattern using Integrated Signal Processing Algorithms with the Aid of Convolutional Neural Networks Reduced Computational Burden Model Predictive Current Control of Asymmetric Stacked Multi-Level Inverter Based STATCOM Analysis of Kaffir Lime Oil Chemical Compounds by Gas Chromatography-Mass Spectrometry (GC-MS) and Z-Score Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1