Document Layout Analysis with Deep Learning and Heuristics

V. Rezanezhad, Konstantin Baierer, Mike Gerber, Kai Labusch, Clemens Neudecker
{"title":"Document Layout Analysis with Deep Learning and Heuristics","authors":"V. Rezanezhad, Konstantin Baierer, Mike Gerber, Kai Labusch, Clemens Neudecker","doi":"10.1145/3604951.3605513","DOIUrl":null,"url":null,"abstract":"The automated yet highly accurate layout analysis (segmentation) of historical document images remains a key challenge for the improvement of Optical Character Recognition (OCR) results. But historical documents exhibit a wide array of features that disturb layout analysis, such as multiple columns, drop capitals and illustrations, skewed or curved text lines, noise, annotations, etc. We present a document layout analysis (DLA) system for historical documents implemented by pixel-wise segmentation using convolutional neural networks. In addition, heuristic methods are applied to detect marginals and to determine the reading order of text regions. Our system can detect more layout classes (e.g. initials, marginals) and achieves higher accuracy than competitive approaches. We describe the algorithm, the different models and how they were trained and discuss our results in comparison to the state-of-the-art on the basis of three historical document datasets.","PeriodicalId":375632,"journal":{"name":"Proceedings of the 7th International Workshop on Historical Document Imaging and Processing","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Workshop on Historical Document Imaging and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3604951.3605513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The automated yet highly accurate layout analysis (segmentation) of historical document images remains a key challenge for the improvement of Optical Character Recognition (OCR) results. But historical documents exhibit a wide array of features that disturb layout analysis, such as multiple columns, drop capitals and illustrations, skewed or curved text lines, noise, annotations, etc. We present a document layout analysis (DLA) system for historical documents implemented by pixel-wise segmentation using convolutional neural networks. In addition, heuristic methods are applied to detect marginals and to determine the reading order of text regions. Our system can detect more layout classes (e.g. initials, marginals) and achieves higher accuracy than competitive approaches. We describe the algorithm, the different models and how they were trained and discuss our results in comparison to the state-of-the-art on the basis of three historical document datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习和启发式的文档布局分析
历史文档图像的自动而高精度的布局分析(分割)仍然是提高光学字符识别(OCR)结果的关键挑战。但是,历史文献显示了一系列干扰布局分析的特征,例如多栏、大写字母和插图、歪斜或弯曲的文本行、噪音、注释等。我们提出了一个使用卷积神经网络实现逐像素分割的历史文档布局分析(DLA)系统。此外,还采用启发式方法检测文本区域的边缘和确定文本区域的阅读顺序。我们的系统可以检测更多的布局类(例如首字母、边距),并且比竞争对手的方法达到更高的准确性。我们描述了算法、不同的模型以及它们是如何训练的,并在三个历史文档数据集的基础上讨论了我们的结果与最先进的结果的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gauging the Limitations of Natural Language Supervised Text-Image Metrics Learning by Iconclass Visual Concepts Laypa: A Novel Framework for Applying Segmentation Networks to Historical Documents Investigations on Self-supervised Learning for Script-, Font-type, and Location Classification on Historical Documents PapyTwin net: a Twin network for Greek letters detection on ancient Papyri Enhancing Named Entity Recognition for Holocaust Testimonies through Pseudo Labelling and Transformer-based Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1