A dynamic checkpointing scheme based on reinforcement learning

H. Okamura, Y. Nishimura, T. Dohi
{"title":"A dynamic checkpointing scheme based on reinforcement learning","authors":"H. Okamura, Y. Nishimura, T. Dohi","doi":"10.1109/PRDC.2004.1276566","DOIUrl":null,"url":null,"abstract":"We develop a new checkpointing scheme for a uniprocess application. First, we model the checkpointing scheme by a semiMarkov decision process, and apply the reinforcement learning algorithm to estimate statistically the optimal checkpointing policy. More specifically, the representative reinforcement learning algorithm, called the Q-learning algorithm, is used to develop an adaptive checkpointing scheme. In simulation experiments, we examine the asymptotic behavior of the system overhead with adaptive checkpointing and show quantitatively that the proposed dynamic checkpoint algorithm is useful and robust under an incomplete knowledge on the failure time distribution.","PeriodicalId":383639,"journal":{"name":"10th IEEE Pacific Rim International Symposium on Dependable Computing, 2004. Proceedings.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th IEEE Pacific Rim International Symposium on Dependable Computing, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRDC.2004.1276566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

We develop a new checkpointing scheme for a uniprocess application. First, we model the checkpointing scheme by a semiMarkov decision process, and apply the reinforcement learning algorithm to estimate statistically the optimal checkpointing policy. More specifically, the representative reinforcement learning algorithm, called the Q-learning algorithm, is used to develop an adaptive checkpointing scheme. In simulation experiments, we examine the asymptotic behavior of the system overhead with adaptive checkpointing and show quantitatively that the proposed dynamic checkpoint algorithm is useful and robust under an incomplete knowledge on the failure time distribution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于强化学习的动态检查点方案
我们为单进程应用程序开发了一种新的检查点方案。首先,我们利用半马尔可夫决策过程对检查点方案进行建模,并应用强化学习算法统计估计最优检查点策略。更具体地说,代表性的强化学习算法,称为q -学习算法,用于开发自适应检查点方案。在仿真实验中,我们用自适应检查点检验了系统开销的渐近行为,并定量地证明了所提出的动态检查点算法在不完全了解故障时间分布的情况下是有用的和鲁棒的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The system recovery benchmark Availabilities and costs of reliable Fat-Btrees Application-level fault tolerance in the orbital thermal imaging spectrometer Expected-reliability analysis for wireless CORBA with imperfect components Failure handling in a reliable multicast protocol for improving buffer utilization and accommodating heterogeneous receivers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1