Using adaptive lossless compression to characterize network traffic

K. Benson, L. Marvel
{"title":"Using adaptive lossless compression to characterize network traffic","authors":"K. Benson, L. Marvel","doi":"10.1109/CISS.2009.5054730","DOIUrl":null,"url":null,"abstract":"Detecting anomalies in network traffic is a challenging task, not only because of the inherent difficulty of identifying anomalies such as intrusions [1] but also because of the sheer volume of data. In this paper, we attempt to extend existing work in the field of steganalysis to the problem of detecting anomalies in network traffic. By losslessly compressing network traffic using an adaptive compression algorithm, we postulate that it is possible to characterize normal network traffic. Once typical traffic has been defined, it is possible to identify anomalous traffic as the traffic that does not compress well.","PeriodicalId":433796,"journal":{"name":"2009 43rd Annual Conference on Information Sciences and Systems","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 43rd Annual Conference on Information Sciences and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2009.5054730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting anomalies in network traffic is a challenging task, not only because of the inherent difficulty of identifying anomalies such as intrusions [1] but also because of the sheer volume of data. In this paper, we attempt to extend existing work in the field of steganalysis to the problem of detecting anomalies in network traffic. By losslessly compressing network traffic using an adaptive compression algorithm, we postulate that it is possible to characterize normal network traffic. Once typical traffic has been defined, it is possible to identify anomalous traffic as the traffic that does not compress well.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用自适应无损压缩来表征网络流量
检测网络流量中的异常是一项具有挑战性的任务,不仅因为识别入侵等异常具有固有的难度[1],还因为数据量巨大。在本文中,我们尝试将隐写分析领域的现有工作扩展到检测网络流量中的异常问题。通过使用自适应压缩算法对网络流量进行无损压缩,我们假设可以表征正常的网络流量。一旦定义了典型流量,就可以将异常流量识别为不能很好地压缩的流量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Molecular recognition as an information channel: The role of conformational changes Extrinsic tree decoding Message transmission and state estimation over Gaussian broadcast channels Iteratively re-weighted least squares for sparse signal reconstruction from noisy measurements Speech enhancement using the multistage Wiener filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1