Generational neuro-evolution: restart and retry for improvement

D. Shorten, G. Nitschke
{"title":"Generational neuro-evolution: restart and retry for improvement","authors":"D. Shorten, G. Nitschke","doi":"10.1145/2576768.2598295","DOIUrl":null,"url":null,"abstract":"This paper proposes a new Neuro-Evolution (NE) method for automated controller design in agent-based systems. The method is Generational Neuro-Evolution (GeNE), and is comparatively evaluated with established NE methods in a multi-agent predator-prey task. This study is part of an ongoing research goal to derive efficient (minimising convergence time to optimal solutions) and scalable (effective for increasing numbers of agents) controller design methods for adapting agents in neuro-evolutionary multi-agent systems. Dissimilar to comparative NE methods, GeNE employs tiered selection and evaluation as its generational fitness evaluation mechanism and, furthermore, re-initializes the population each generation. Results indicate that GeNE is an appropriate controller design method for achieving efficient and scalable behavior in a multi-agent predator-prey task, where the goal was for multiple predator agents to collectively capture a prey agent. GeNE outperforms comparative NE methods in terms of efficiency (minimising the number of genotype evaluations to attain optimal task performance).","PeriodicalId":123241,"journal":{"name":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2576768.2598295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a new Neuro-Evolution (NE) method for automated controller design in agent-based systems. The method is Generational Neuro-Evolution (GeNE), and is comparatively evaluated with established NE methods in a multi-agent predator-prey task. This study is part of an ongoing research goal to derive efficient (minimising convergence time to optimal solutions) and scalable (effective for increasing numbers of agents) controller design methods for adapting agents in neuro-evolutionary multi-agent systems. Dissimilar to comparative NE methods, GeNE employs tiered selection and evaluation as its generational fitness evaluation mechanism and, furthermore, re-initializes the population each generation. Results indicate that GeNE is an appropriate controller design method for achieving efficient and scalable behavior in a multi-agent predator-prey task, where the goal was for multiple predator agents to collectively capture a prey agent. GeNE outperforms comparative NE methods in terms of efficiency (minimising the number of genotype evaluations to attain optimal task performance).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
代际神经进化:重新启动和重试改进
本文提出了一种新的神经进化(NE)方法用于基于智能体系统的自动控制器设计。该方法是世代神经进化(GeNE)方法,并与已有的NE方法在多智能体捕食-猎物任务中进行了比较评估。本研究是一项正在进行的研究目标的一部分,该目标旨在为神经进化多智能体系统中的自适应智能体提供高效(最小化收敛时间至最优解)和可扩展(对增加智能体数量有效)的控制器设计方法。与比较NE方法不同的是,GeNE采用分层选择和评价作为代适合度评价机制,每代对种群进行重新初始化。结果表明,在多智能体捕食者-猎物任务中,基因是一种有效且可扩展的控制器设计方法,该任务的目标是多个捕食者智能体共同捕获猎物智能体。GeNE在效率方面优于比较的NE方法(最小化基因型评估的数量以获得最佳任务性能)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Three-cornered coevolution learning classifier systems for classification tasks Runtime analysis to compare best-improvement and first-improvement in memetic algorithms Clonal selection based fuzzy C-means algorithm for clustering SPSO 2011: analysis of stability; local convergence; and rotation sensitivity GPU-accelerated evolutionary design of the complete exchange communication on wormhole networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1